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FORWARD

This survey attempts to make a critical study of methods described
in the literature for the analysis of metal structures under dynamic loads
1eading to plastic deformations.

Analyses have now appeared in the literature of a considerable
variety of structures of engineering interest. They include beams (under many

conditions of loading, support, and materials), rings, arches, frames {simple

rectangular bents), plates (circular and rectangular), membranes (i.e. plates

with deflections greatly exceeding the thickness), and shells (axially sym-

metric loading on cylinders, spheres, and spherical caps). Most of these

have been obtained by a rigid-plastic type of analysis (in which strain rates
are assumed zero unless a yield condition is satisfied)., A few have been
cbtained by wholly numerical approaches of finite difference type.

Experiments reported in the literature have in most cases shown that

the actual permanent deflections are smaller than those predicted on the basis

of plastic properties determined by quasi-static tests, the predictions often

being in error by as much as 100 percent or more for mild steel, with smaller
discrepancies for other metals, such as aluminum alloys or high strength steels.
Strengthening under conditions of rapid straining has been considered the prin-

cipal cause of such discrepancies; when it has been possible to modify the

analysis to take account of the increase of yield and flow stresses at high

Strain rates, much better agreement has in most cases been obtained,

The mathematical approaches have depended heavily on assumptions.

This is obviously true of analytical solutions such as rigid-plastic analysis.
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It is also true, to a lesser extent, of the wholly numerical solutions; for

| v et

example the "MIT method" (see Witmer et al (1963), (1967)% ) depends on a
parallel rod model of a beam or plate. Although "agreement" has often been
obtained, it also has often been the case that only one or two tests were made
for purposes ol cumparisen. It is difficult to draw general conclusions
unless the tests form a comprehensive series.

A plate or shell deforming plastically due to impact or shock load-
ing behaves in an extremely r~omplex manner which is difficult to analyze even
if the laws of plasticity established for quasi-static conditions are exactly
obeyed. Analytical solutions are out of the question except by rigid-plastic : i
methods; when elastic deformations are included the solution of partial dif-
ferential eqhations with moving boundaries is required, and in addition the
equations become nonlinear if finite deflections must be considered, as is
commonly the case. The fact that dynamic plastic properties are greatly dif- :
ferent from those determined statically, for steel and some other important

structural metals, increases the fundamental difficulty by orders of magni-

tude, Very little is known about dynamic plastic behavior except for unjaxial
stress states and pure torsion. Extensions of such standard concepts of static
plasticity as yield surfaces and flow rules (either in terms of stresses or

of stress resultants) to conditions of rapid and variable straining have not
been investigated. Mathematical solutions in the literature using such con-

cepts whether by analytical or numerical means are speculative, and the re-

sults must be considered suspect.
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* References are listed alphabetically in the Bibliography at the end of the

report.
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The present survey is limited to studies in some depth of analytical
methods and experimental investigations on beams. This limitation is deliber-
ate and believed justifiable, in view of the present absence of knowledge,
concerning laws of dynamic plasticity for complex stress states. A beam
exhibits most of the major sources of complexity arising from mixed elastic
and piastic behavior at large deflections. However the stress and strain
states are relatively simple, apart from the possible influence of strain
gradients. Thus the interactions between dynamic plastic stress resultants
in a beam are relatively tractable. Alsc, and most important, for beams there
are several published experimental investigations that are quite extensive and
c omprehensive, These make it feasible to carry out detailed analyses and inter-
pretations of the test results, and thus to attempt to gain understanding of
t he basic processes and mechanisms.

It seems apparent to the writer that such basic understanding must
first be reached for beams. There will then be a gcod chance of gaining it
for general deformations of plates, membranes, shells, and other structures,

There are two important areas of dynamic plastic structural analysis,
which have been developed in recent years, which have had to be treated in-
adequately in the survey. One is the area of numerical solutions by finite
differences or finite elements. The other area is undoubtedly the maﬁor theo-
retical achievement in the subject in recent years, namely the development by
Martin of energy techniques which furnish bounds on displacements and duration
times (see Martin 1964, 1965, 1966). The study of the application of these
methods and of the related mode approximation technique to aralysis and design
must be dealt with separately. These new methods promise to make possible

the treatment in a simple but realistic way of complex structures under any
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impulsive and perhaps more general classes of loading.

This survey was initiated and supported for an initial two year
period by the Underwater Explosions Research Division of the Naval Ship
Research and Development Center. The writer is most grateful for the
helpful consideration shown by Dr. Schauer of the Underwater Explosions Re-
search Division during the extended period of its preparation. The survey
was begun as a joint project with Professor S. R, Bodner, whose valuable
collaboration ended when he resigned to become Professor of Mechanics at
Technion - Israel Institute of Technology. Material contributions were
made at different times by Research Assistants D, P. Updike (now Assistant

Professor at Lehigh University) and J. F. McNamara. Invaluable assistance

was given by Miss Mary Huntsman in connection with drawings and illustrations,

and by Mrs. Susan Erdmann who did most of the typing.
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Chapter 1

MATERIAL PROPLRTIES

1. Constitutive Laws, In analyses of structures deforming plastically under

i o s

dynamic loads one must use appropriate constitutive laws, i.e. mathematical
formulations of the essential features of behavior relating stress and strain
tensors and their time derivatives. :
The laws of plastic behavior of metals are generally defined as
relations that are homogeneous in time; thus the material behavior involves
no influence of times or rates. In fact, in structural metals rate effects
may be of great importance, but we postpone discussion of them until a later
section of this chapter, With this understanding, the main features of
plastic behavior of structural metals are sketched in Figs. I 1(a), I 1(b), :
and summarized as follows:
(1) An elastic range governed by a yield stress or other yield
conditions appropriate to the stress state.
(2) Plastic deformation with work hardening, governed by flow
rules and lecading conditions for three dimensional stress states.
(3) Irreversibility; unloading occurs elastically, leaving
residual stresses and permanent {plastic) strainms,
(4) Bauschinger effect; a reversal of loading after plastic
deformations have occurred leads to plastic deformations in the reversed sense
at lower stress magnitudes than those at which the previous plastic flow
occurred.
In this review we shall be concerned with structures such as beams
and plates where the state of stress is described by means of stress resultants
such as bending moments and axial forces, The laws of plasticity concern
relations between stress resultants and generalized strains such as curvature

and strain at the center-line. They are derivable in general by calculation




Wbt i BBy MR R RO e g - . o e S0 ORI A P SR

e . e e

—y omy omN

A |

el s heaes

-

from the stress-strain curve for simplé tension or compression specimens
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together with vield conditions such a résca and von Hises. It is

common to assume that plane sections remain plane.

2. Idealizations., Idealizations of plastic (time independent) behavior
are essential to make analyses of plastic deformations tractable, in static
and much more so in dynamic prcblems. Hence the bilinear stress-strain curve
of Figs. Il{(c) is often used for elastic-plastic behavior; here the stress-
strain relation has slope EP in the plastic range o > ay for initial load-
ing, while Young's modulus E zoverns elastic behavior. Further idealizations
are indicated in Fig. I1(d). Here the solid curve represents two drastic
but often satisfactory idealizations: (1) the elastic modulus E is taken
as infinite; and (2) the plastic slope Ep is taken as zero. The hypothetical

material behav..r is referred to as rigid-perfectly plastic. It is common

to apply this type of analysis to static problems where plastic strain
components greatly exceed elastic strains, and the material is very ductile.
As will be discussed in detail in the review, the use of rigid-perfectly
piastic analysis in dynamic structural problems makes for a very great
simplification, so that it deserves careful study to determine the range of
its validity.

For some problems strain hardening cannot be neglected. The
idealized rigid-plastic material with work hardening is shown in Fig. I 1(d).
In structural problems the need to consider strain hardening may arise not
so much because strain hardening is large, but because some physical feature
of the actual response disappears when perfectly plastic behavior is assumed,
For example, in beams under either static or dynamic loading, large plastic

deformations occur at plastic hinges. In the real structure these are short

\l
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regions (of the order of the beam depth) where intensive plastic flow occurs.
if perfectly plastic bebavior is assumed, the plastic hinge is a point on
the beam center-line. The dependence of the size of the plastic hinge on the
loads and on time can only be studied if the material is taken to have a
finite degree of strain hardening. Another example is that of impact on the
end of a long thin rod, when the impact is severe enough to produce stresses
above the elastic yield stress oy. If the material is assumed to have a
perfectly plastic behavior, there is no propagation of plastic ctress and
strain waves away from the impact end, and an infinitesimal segment of
the rod at the struck end acquires infinite strains.

The point of these remarks is to emphasize that the neglect of
strain hardening may be permissible in one problem but quite unrealistic
in another, in each case involving the same material, In the beam problem,
unless ore2 wishes specifically to study the plastic zones (finite in a real
structure) it may well be a good approximation to treat the material as
perfectly plastic, but in the rod impact problem such a treatment does not

lead to results of physical significance.

3, Idealized moment-curvature relations. As idealized bending moment-

curvature characteristic for a given beam section can be derived, as mentioned,
from the stress-strain diagram for simple tension and compression plus the

Bernoulli-Euler assumption that plane sections remain plane. As an example,

. corresponding to the bilinear stress-strain law of Fig. I 1l(c), one obtains

a4 moment-curvature relation for a rectangular cross-secticn given by th

Y ne

following equations:

M = EIx, or = E— (2.1a)
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where
o
Kk =22
y heE
2
} _21 _ bh
My-EIK *y Oy % Gy
b = width of cross-section
h = depth of cross-sec ion
The idealization of the moment-curvature relation to two straight
lines, one of elastic slope %% = EI, and the other witi. slope EPI, is
commonly made. The initial elastic line can be taken with good accuracy as
M
extending to M = Mp = aHy. where a = ﬁE-is the shape factor, the ratio of

y
fully plastic moment to yield moment. For the rectangular section a = 3/2,
while for I-sections bent about the major axis a is about 1.15. Thus for

this approximation the bilinear moment-curvature idealization can be written

M K M X
M :Mp el or T (3.2a)
y y p P
M ERK
M _>_Mp :"M— = 1+ I e (3.2h)
P p
where M = aM ; x = axk .,
P y P Yy

Figure I 3 shows the moment curve derived from the bilinear stress curve,
and the bilinear approximation for the moment curve. It is evident that the
significant quantities for treating problems of bending are the fully
plastic moment Hp and the slope EPI in the work hardening range. The ripid-
plastic moment-curvature idealizations are indicated in Fig. I2(c), where

the solid curve represents perfectly plastic and the broken curve linearly

work hardening behavior.
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As indicated in Figs. I2(b) and I12(c), it is simplest to take
the elastic range, for reversed loading, as 2Hp. There is little experimental
justification for this, since phenomena involving reversed loading in bending
have not had much attention despite the fact that in dynamic problems
there are many cases where large bending moments of reversed direction occur
and lead to reversed plastic deformation, under a unidirectional main load-
ing. There are other uncertainties, for example concerning rate effects,

which make it difficult to assess the experimental evidence concerning

the bauschinger effect in dynamic problems, at this time,

4 Plastic interactions. It has been mentioned that interactions between
stress resultants in the plastic range must be considered in many structural
problems. In later sections of this review more details will be given con-
cerning recent work in constructing theoretical interaction curves, and
solutions and experiments involving interactions. Here we will merely
illustrate the problem.

The two most important intepractions in beam problems are those
between bending maoment and axial force (M,N) and between bending moment
and shearing force, (M,Q). Representative interacticn curves of these
types are shown in Figs. 1 2(d) and I 2(e), in terms of ratios involving
the limiting plastic values of bending moment Mp, axial force Np, and
shearing force Qp. These curves correspond to stress-strain behavior of
perfectly plastic type, and are derived theoretically from concepts of
limit amalysis. Thus, no plastic deformation is supposed to cccur for

points inside the curves, while unrestricted flow can occur for points on

the curves. Curves A in Figs I 2(d) and I 2(e) are for rectangular

cross-sections. Curve B in Fig. I 2(d) is for the limiting I-beam
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or sandwich
but negligible thickness. Curves for real I-sections lie between A and B,
The shear interaction curve marked B' in Fig. I 2(e) is for a typical wide-
flange l-section. The steeply falling portion of curve B' corresponds to
reaching the limiting force in shear of the web alone, and this marks, for
practical purposes in a problem of moment-shear interaction, the maximum
shearing force that can be carried by the section.

Further details concerning these curves, including the correspond-
ing relations governing deformations, will be given in the sections dealing
with problems requiring them, It should be emphasized that they are
theoretical, not experimental curves. Experimental evidence confirming
them directly is very meagre for static problems, and almost non-existent
for dynamic problems. Dynamic experiments have been performed giving some
indirect evidence on their validity (Nonaka, 1964), and these will be
reviewed in a later section. It can be said here that the use of inter-
action curves based on static plasticity behavior has useful suggestive
value, indicating potential deformation patterns and magnitudes. However
the details of such interaction curves, at least tor dynamic problems of
some common structural metcls, are highly questionable because of their
neglect of strain rate sensitivity. Rate effects have been studied fairly
extensively for simple stress states, but knowledge of rate sensitivity
in complex stress states is almost entirely conjectural.

In problems of plates and shells further interaction relations
must be used, especially between bending moments and axial forces, which
can be depicted as surfaces in an appropriate stress space. Techniques for

establishing these and the corresponding displacement relationships have
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hesn described in the litersture, The remarke about experiments and rate

effects apply to these.

5. Strain rate effects on yield stress. The most important difficulty in

the way of solving problems of plastic deformation of structures under
dynamic loading comes from the fact that the material behavior is not that
of conventional plasticity theory. Even at the moderate strain rates in
most structural problems (usually not exceeding about 100 per second) many
structural metals have substantially different stress-strain characteristics
than they exhibit in quasi-static tests.

The simplest way of depicting this so-called "strain-rate sensiilivity"
is by families of curves showing either stress versus strain at constant strain
rate magnitudes, or stress versus strain rate at constant strain levels. Such
curves have been obtained by experiments using techniques which vary in detail
but in general involve impact on a short specimen - a rod or tube with length
and diameter of comparable size - with one end constrained. Measurements are
made of stress at one or both ends of the specimen and of strain and strain
rate across the specimen length. Determinations of this sort are direct in
the sense that it is not necessary to postulate a theory of plastic wave
propagation in order to interpret the test data. However they are subject to
the criticism that they determine averages of stress, strain, and strain rate
over the specimen length, and because of propagation effects it is possible
for these quantities to vary widely over this length. A further criticism is
made that in impact tests on cylindrical specimens there is ipnitially a three-
dimensional stress and strain state at the impacted surface, rather than the
uniaxial stress state of static tests; it has therefore been argued by Bell

(see Bell, 1963, for example) that an apparent strain rate seansitivity in such

o
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tests is not a material property but a purely geometrical result associated
with elastic dilatetion waves first excited by plane impact on the end of

the specimen. Such phenomena are undoubtedly critical in very short time,
high velocity tests, but while the geometrical effects are certainly always
present it seems unlikely that they play an important role in tests at strain
rates up to about 100 sec_l. which are concerned in structural problems. One
indication that the strain rate effects are real physical properties is

their strong dependence on the condition of the metal; changes in heat
treatment or alloy content produce large changes in the strain rate properties.
A second indication is that the use of radically different techniques
furnishes similar resglts; for example tests in which a ring specimen is
expanded by an explorive pressure (see Johnson, Stein and Davis, 1963) or in
which torsion or shear impéct (for example D, B. C, Taylor and Tadros, 1956)
are applied lead to increases in yield stresses close to those measured in
tension or compression impact tests.

Here we give illustrations of strain rate dependence for mild
steel and a few other structural metals. These are shown to indicate the
magnitude of the changes in yield stress at moderate strain rates., Later
in this survey a review of test results on beam specimens is given, and
the analysis of plastic deformations of beams cof strain rate sensitive
materials is discussed. These problems require knowledge of strain-rate
dependence of flexural properties. Recently direct measurements have been
made of these (Aspden and Campbell, 1966). We defer discussion of these
until later.

Figure 14 shows a plot for mild steel of stress as a function
of both strain ¢ and strain rate ¢, by means of an isometric projection

diagram. This was published by Marsh and Campbell (1963). This plot shows
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dramatically how, for a mild steel of given composition and treatmcnt,
subjected to a certain type of test, the stress-strain curve changes in
position and shape as the strain rate is increased. Three aspects of
such "dynamic stress-strain curves' are of interest:

(a) In the initial portion of the curve the stress rises
elastically to an upper yield stress and then falls abruptly to a lower
value, as plastic straining increases rapidly. The upper yield stress
is a function of the strain rate in the elastic range, and is associated
with the phenomenon of yield delay time; but both are of less interest
than other features of the dynamic curve, for our purposes. Their
significance for structural problems will be discussed in the following
section 1.6.

(b) Plastic straining occurs at a nearly constant stress termed
the lower yield stress, This stress magnitude and its dependence on strain
rate are of primary importance in analyzing plastic deformations of structures
under dynamic loading.

(c) The lower yield "plateau" terminates at a strain that depends
on the strain rate, and is followed by a strain hardening region. The
slopes of the stress-strain curves at various strain rates do not differ
greatly from each other and from the slope of the static stress-strain
cuprve, in this region.

It is seen that the dynamic stress-strain curves do not retain

the same shape as the static curve (see Figs. I 5(a), T 5(b),

I—

s(z)

Fortunately, in the applications the lower yield stress is of main
importance, and it is not necessary to try to express mathematically the
obviously complex features of the dynamic stress-strain curves.

Although the three-dimensional representation of stress, strain and

i
1
3
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strain rate is of great interest, it should be accompanied by warnings. In
the first place, it may give the impression that a metal has an equation
of state, i.e. that a single functional relation holds between o, ¢, and €,
No such relation can strictly be expected to exist, for a metal deforming
plastically. It must be presumed that the plastic flow stress is a function
not only of the current strain and strain-rate, but of the previous history
of straining. If the effect of history is very strong, different diagrams
would be obtained by different test methods. Fortunately for practical
applications, however, it has been found that two quite different types of
tests lead to closely similar diagrams. This question was studied by
Marsh and Campbell (1963), who found in fact that tests imposing (a) a pulse
of constant stress and (b) a nearly constant rate of strain led to diagrams
of stress versus strain at constant strain rate with fairly good agreement
as to both magnitudes and shapes. Some of these results are shown in
Fig. 15(c), where stress-strain curves constructed from “"constant stress"
and ''damped dynamic" (=constant strain rate) tests are compared.

Presuming that as a practical approximation one can make use of a

functional relation f(¢

€
& 2 » =~

,» £€) = 0, one must still expect that strain rate
sensitive plastic beiavior of mild steel, for example, will depend on the
chemical constitution and on the prior heat treatment, It is important to
have an idea of the quantitative importance of these influences., Marsh and
Campbell (1963) investigated the effects of changing grain size, as shown
by comparison of Figs. IS5(a), 15(b), and I 5(c). Later work of Aspden
and Campbell (1966) used a different but similar mild steel, and although
the apparatus was basically the same as in the earlier experiments, improved

the technique for measuring strain and strain rate during a test., Figures

15(d) and I5(e) from Aspden and Campbell (1966) may; hc compared with the
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"conustant stress" test results, Figs. 1I5(b) and I 5(c).

Figures 16 and 17 show further indications of variations in

strain rate sensitivity to be expected with different mild steels and

testing methods. We shall not attempt to analyze the difference in reported

strain rate behavior, but will merely indicate their magnitude. As a

measure of strain rate sensitivity we plot ¢'/g_ where oy is the lower

yield stress in a static test and o' the same quantity at a specified

strain rate. In Fig. I & we have plotted this ratic as reported by

eleven laboratories over a period of time from 1938 to 196u, This plot

is not intended as a complete summary; other references can be found for

example in the book by Goldsmith (1960). The collectiun of results in
)

Fig. I 6 shows good agreement for most of the results at strain rates below

about 100 sec-l. The data of Manjoine (1944) cover a wide range of strain

rate and are representative of the more recently obtained results. They

have been used in analyses to interpret bending impact tests, and will be
discussed later; recent data of Aspden and Campbell (1966) on strain rate

sensitivity in flexure tests will also be referred to in that connection.

Massard and Collins (1958) gave results for twelve structural

steels, including low carbon plate or bar stock in various treatments

("rimmed," "semi-killed," "fully killed," "annealed," etc.), some low

alloy steels, and a nickel chromium steel, Their results are of interest

in showing that substantial differences in strain rate sensitivity are

reported even between steels of very similar chemical composition and static

yield strength. A few of Massard and Collins' tabulated results are plotted

in Fig. I7. Of all the carbon steels tested by Massard and Collins those
designated 2SRBA and K showed the greatest and least strain rate sensitivity,

respectively. The only "low alloy" steel for which strain rate data are
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given is that designated Q; this has a static yield stress considerably
higher than that of the low carbon steels, and the rate sensitivity curve
lies below all the curves for the carbon steels.

It is striking that the curves for a single material - a semi-killed
steel - with specimens cut parallel to the direction of rolling in one case,
and transverse to it in the other - show differences as large as those between
many of the low carbon steels and the low alloy steel designated as Q.
Directional properties could arise from processes of fabrication of a welded

structure, as well as from manufacturing processes. Their effects on plastic

rate-sensitivity have not been investigated.

We give next some indication of what is known about strain rate
sensitivity in steels of higher strength than mild steel. Higher strength

carbon and alloy steels have received very little systematic investigation

in regard to their strain-rate behavior. Some tests in this category are

listed below. In all cases either a lower yield stress or a stress at a

strain of roughly 0,01 is considered:
(a) Cold rolled steel (SAE 1020 or similar)

Suith, Pardue, and Vigness (1955) reported tesis on a steel
of static yield strength about 84 ksi at strain rates of
about 10 sec-l, and found a negligible change of the yield
stress (at a strain of about 0.01), Steidel and Makerov
(1960) observed an increase of yield strength of about 20
percent at a strain rate of 100 sec-l; their steel had a

static yleld stress about 80 ksi.

(b) Low alloy carbon steel:

The report of Massard and Collins (1958) includes the ASTM

A-2u2 steel designated Q in Fig. 17 (static yield strength
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60 ksi, with 0.19% C, 1.10% Mn), and a few cthers of this

o T Rt 2 . L D "1'=ﬂWI b

type. The Q steel, as indicated in Fig. I 7, has a

dynamic yield strength ratio of about 1.4 at strain rates

LT P FE  ie

about 10 sec—l. A few other low alloy steels tested by

Massard and Collins apparently had strain rate sensitivity g i

too small to be determined by their technique. Baron (1956)

found for an En 12 steel (a hardened and tempered steel of

g e

0.34% C, 0.82% Mn, static yield stress about 74 ksi) a 5
dynamic yield strength ratio of about 1.25 at strain rate |
about 80 sec

Clark and Duwez (1950), using their tubular specimens sub-
jected to circumferential stress due to internal pressure,
tested a carbon-manganese steel (0.12 - 0,17% C, 1.25% Mn,
with yield strength 55 ksi), and reported dynamic yield
strength ratio averaging about 1.2, at strain rates of

approximately 40 sec‘l.

{c) Nickel-chromium steels:

Several investigators have tested various nickel-chromium
alloy steels and found either no strain rate sensitivity
or a very smail effect (less than 10 percent increasz of
yield stress), at strain rates up to about 100 sec-l.
Among these investigators are Brown and Vincent (1941),
Clark and Duwez {1350}, Baron {1956), &and Massard and

Collins (1958). Smith, Pardue, and Vigness (1955} found

an increase of about 15 percent in tests on SAL 4340 steel
(0.84% cr, 1.64% Ni, with static vield stress about 210 ksi).

However, the same investigators observed a relatively large
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effect in SAE 4iu40 steel {(1.08% Cr, 0.12% Ni, 0.37% C,

ey ) =R

0.21% Mo, 0.89% Mn, with static yield strength about 102

Y

ksi), finding for this material a dynamic yield stress

.

- ratio of over 1.6, Finally, we may note that although

ii no rate effect was found by Brown and Vincent (19u41), the
same nickel-chromium steel tested by Whiffin (1948), using
the projectile compression technique devised by G. I,

Taylor (1948), showed a dynamic strength rate ratio of nearly
1.8 at the very high strain rates (estimated at 15,000

sec-l) of the projectile tests. This was a steel of

3.55% Ni, 0.47% Cr, with static yield stress about 110 ksi.

" d

Similarly, for "Viprae" steel (u.05% Ni, 1.23% Cr, 0.28% Mo)

wrirgped

the projectile impact test conducted by Whiftin showed a
= dynamic stress ratio of about 1.6, while previous work by
- Brown and Vincent (19u4l) showed no measurable increase at
strain rates up to 8§55 sec-l. The Taylor type test has the
hizhest strain rates yet reported in (nominal) plane stress.
The projectile impact tests involve sericus difficulties
of interpretation, and the assigned strain rate figure
{16,500 sec-l in these tests) is only a guess; however,
an independent confirmation of the dynamic ratio for this
material at very high strain rates was given by Costello
(1957) using a plane impact wave technique.
Finally, references and remarks on non-ferrous metals will be given
o to complete the general picture concerning test data on rate sensitivity,
Pure aluminum has received a great deal of attention, and curves

of dynamic stress versys strain or strain rate are reasonably well accepted
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for annealed purc aluminum;, review papers of Malvern (1965) and Lindholm
{1965) may be consulted for these. Hauser, Simmons, and Dorn (1961), and
Karnes and Ripperger (1966) have given similar curves for pure aluminum after
prestraining. ‘hese tests are all in more or less complete disagreement

with those of Bell (see Bell, 1966 , for a brief review). The discrepancies
are far from completely understood. Bell's tests over many years have
concerned propagation phenomena in relatively long rods, He presents results
that agree with rate-independent plastic wave theory, and hence are difficult
to reconcile with dynamic st-ess~strain curves showing strain rate dependence.
This may mean that wave phenomena are governed effectively by shapes rather
than by magnitudes of stress-strain curves, and that there is in effect a
"dynamic stress-strain curve' which somehow dominates the wave propagation
problem, and which has a shape not greatly differing from that of the curve
measured statically. This is certainly not a satisfactory or complete
explanation, and others have been advanced; see, for example, Bell and Stein
(1962) and Karnes and Ripperger (1966). Since our interest is in structural
rather than pure metals, we shall not pursue this further. Obviously the
disagreements are basic to the subject, and their explanation would be
pertinent to investigations of other metals.

Tests on the dynamic plastic behavior of the structural aluminum
alloys have been reported by a considerable number of investigators, 1In
general, the alloys of higher static strength have smaller strain rate
sensitivity. This trend has been particulariy clearly shown by very recent
tests of Green, Maiden, and Babcock (1966). They found, for example, that
6061-T6 in a fully strengthened condition had no measurable strain rate
effect, but that in an annealed condition, and at higher temperatures, sub-

stantial rate sensitivity was determined. However, the evidence concerning

whoite,
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6061~T6 is not without contradictions. Hoge (1965) recently published test
results showing a ratio of dynamic yleld strength to static of over 20
percent at a strain rate of about 100 sec‘l. Earlier work includes similar
contradictory reports cn 6C81-T6; Massard and Collins (1958) couid find no
rate sensitivity, but Ripperger sod Turnbow (1953) reported an increase of
yield stress proportional to the strain rate, with a rise of approximately
10 percent at 1000 secwln Steidel and Makerov (1960) gave results feor a
number of aluminum alloys: 5154-0, 5486-0, 6061-0, 6061-T6, 7075-0, and
7075-T6, waking tests at strein rates up to about 100 sec-l. Unlike Green
et al. they found 602l to have no rate dependence in either the 0 or Té6
éondition; but 7075 was shown to exhibit about the same increase in yield
stress in both 0 and Té conditionms,

The observed differences in strain rate sensitivity of 6061-Tt might
well be ascribed to differences in heat treatment or aging, although the
negative results just qucted of Steidel and Makerov (1960} contradict this

explanation. Clearly differences in technique may be responsible for part

of the discrepancies. In any case these are small effects (compared to
milZ steel),

Finally, Steidel and Makerov {196Q) gave results for a series of
titanium alloys, tinding rate sensitivity of about 1.80 for alloy RS-55
(with static yield otress u3 ksi), of 1.30 for alloy RS-110B (static yield
120 ksi), and negligible rate dependence for the strongest allov tested,
namely RS-130 (static yieid stress 1ué ksi).

To sum up, this brief review of data concerning strain rate
dependence of behavier in the plastic range of metals may suffice to show
the magnitude of the effects in metals of structural interest, and at the

same time some of the uncertainties in knowledge about this behavior. T! -




e LT aad

—  wcm W g

L

-17-

lower yield stress of mild steel is substantially raised: strain rates
in the range 10 sec-l to 100 sec"l can lead to an increase of 100 percent
over the static value (Fig. 16). But there is no unique curve for "low
carbon steel"; Fig. I7 shows variations of 25 percent between steels of
approximately the same static strength, at a strain rate of 10 sec-l.
Higher strength carbon and alloy steels show in general much less rate
sensitivity than mild steel, but yield stress increases (20 to 40 percent)
have been reported for steels of 50 - 60 ksi static yield. Structural
aluminum alloys also have much less rate sensitivity, and although yield
stress increases of 25 percent have been reported, these are not consist-
ently found; the discrepancies reflect differences both in condition of
the metal and in methods of testing. Some other structural metals and

alloys, notably those of titanium, exhibit rate effects comparable to those

of mild steel.

$. Yield delay time. The property of yield delay time, exhibited by mild

steel and some other metals, consists in a delay in the development cof
plastic strains when the specimen is subjected to stresses above the static
(upper) yield stress. This phenomenon was noticed in very early investi-
gations (B. Hopkinson, 1904), but was first studied systematically by

Clark and Wood (1948). It has had much experimental and theoretical study
since then (see, for example, Campbell and Marsh, 1962, and Krafft and
Sullivan, 1959). The simplest case is that in which a pulse of stress is
very rapidly applied and maintained constant. The observed delay time is a
function of the excess stress applied above the static upper yield; for

stresss “low the static upper yield magnitude the delay time is indeterminate.

It is . 4 that a plot of the excess stress against the logarithm of the
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delay time is close to a straight line, although a log-log plot gives a
more linear relationship at small times.

If the loading is not a simple step pulse it is possible to
compute an equivalent delay time by an assumption of proportional damage
accumulation. This was done by Vigness, Krafft, and Smith (1957), with
the results shown in Fig. I8 Experiments cmploying constant 1 ad,
constant rate of increase of load, and oscillatory loading were used, and
the data determine a straight line in the semi-log plot, within the limits
of experimental accuracy.

Examples of stress-strain curves at constant strain rate for
mild steel have already been given in the isometric projection diagram of
Fig. I4 (Marsh and Campbell, 1963). These tests show a marked enhancement
of the upper yield stress as the strain rate is increased; the upper yield
stress is increased more rapidly than the lower yield stress. This
enhancement is shown in the curves of Figs. I 5(a)-(c), from Marsh and
Campbel% (1963), and more strongly in those of Fig. I 5(d) from Aspden and
Campbel! (1966). The comparison of the two sets of curves is of interest
in showing details determined by improvements in instrumentation, using
essentially the same impact apparatus, and similar steels. The céﬁnection
between yieid delay time and upper yield stress has been recognized; see,
for example, Epe discussion of Krafft and Sullivan (1959).

The ;ield delay time and enhanced unpér yield stress; as observed
in laboratory impécr“tests of mild steel, would appear at first glance to
be highly significant for applications of analytical approaches to the plastic
deformation of engineering structures. Clearly the transition from wholly
elastic response to one with a mixture of elastic and plastic deformation

might be strongly affected by such properties as yield delay time and increased
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upper yield stress, and analytical predictions of plastic deformations
which ignored these effects could bc nonsense. Keil (1960) has discussed
the inclusion of yicld delay time in studies of dynamic loading of
siructures,

In practical structures, however, the phenomena of yield delay
time and raised upper yield stress may be less important than the labora-
tory results discussed above would indicate. These quantities are observed
in laboratory experiments in which much care is taken to eliminate stress
concentrations and eccentricity of loading. It was noted by Belsheim (1954),
among others, that the yield delay time and upper yield stress disappeared
when a specimen inadvertently had a surface flaw or scratch. The sensiti-
vity of the upper yield stress to these conditions has been well known in
static tests. The observed enhancement of upper yield stresses in impact
tests may mean 2 decreased sensitivity to eccentricity of loading in impact.
In any event, in resl structures various kinds of stress raisers are almost
inevitable, and yield delay times and upper yield stresses may rarely be

encountered. Hence it is conservative and realistic to ignore them in

The lower yield stress, on the other hand, has no such
sensitivity to axiality of loading and absence of stress concentrations,
and its dependence on strain rate clearly appears in practical engineering
structures as well as in laboratory specimens. Its consideration as a
factor in design is therefore justified. Considarable attention will be
given in this review to evidences of rate sensitivity in experiments on

beams, and to methods of including this behavior in analyses.
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Figure Captions for Chapter 1

Caation

Forms of nominal stress-strain diagrams: (a) . _ .b)
as measured for structural metals; (b) and (c) are
idealizations.

Moment-curvature and interaction diaprams for beams:

{a) shows representative measured moment-curvature dia-
grams, (b) and (c) idealized moment-curvature diaprams;
(e) rigid-perfectly plastic. (d) shows interaction be-
tween bendinp moment and axial force: curve A for a
rectangle, curve B for a sandwich beam. (e} shows inter-
action hetween bending moment and shear force (limit load
curves for end-loaded cantilever): curve A for rectangle,
curve B' for I section, where Q is limit shear force for
web area. v

Bilinear nominal stress-strain diapgram and corresponding
moment-curvature diapgram (full curves); approximating
bilinear moment-curvature diagram (dashed curve),

Stress-straine-strain rate diagram for mild steel shown as
isometric projection (from Marsh and Campbell, 1963);
"constant stress'" type tests, strain rates up to 20 sec ,
Stress and strains are compressive, nominal values,

Comparison of results of compression strain rate tests of
mild steel: (a) - (e) from Marsh and Campbell (1963);
(d), (e) from Aspden and Campbell (1966€).

(a) Series E: 'constant strain rate" tests, steel with
mean grain density 2033 grains per nn?

(b) Series C; "constant stress" tests, 2033 prains per mmg.
: . . 2
(c) Series B: '"constant stress' tests, 773 grains per mm' .

(d) Curves of typical "constant stress" tvpe test of Aspden
and Campbell (1366),

(e) Families of stress-strain curves at various rates, mean
pgrain density 2300 grains per mm“, for comparison with
(b), showing changes with different mild steel, details
of test technigque.

Representative data on strain rate dependence of lower yield
stress of mild steel: o '/o_ = ratio of dynamic to static
lower yield stress, Tes¥s of Marsh and Campbell (1963),
Aspden and Campbell (1966), and Whiffin (1948) in compres=-
sion; all others in tensionj; Clark and Duwez (1950) used
circumferential tension in cylinder with internal pressure,
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Figure

Caetion

From Massard and Collins (1958): examples of yield stress
dependence on strain rate for several structural steels.

From Vigness, Krafft, and Smith (1958): increase of upper
yield stress over static upper yield stress as function of
delay time (computed by intepration so as to give the equiva-
lent of constant-load test.)

Points marked o for constant load test.

Points marked + for uniformly increasing load.

Points marked A for combined constant and oscillatory load.
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Chapter 11

BEAMS - ANALYTICAL METHODS

1, Basic Ideas

A beam is the simplest prototype of the general continuous engineering
structure. Here "beam" means a body, one of whose dimensions is large compared to the
maximum transverse dimension. The simplest case is a straight bar of uniform cross-
gsection, This is by definition a "beam" if the loads are mainly transverse to the long
axis,

A beam is a three-dimensional bady, but a treatment must be given in terms

of stress resultants: bending moments M, shear forces 0, axial force ¥ and torque

T; arising from normal and shear stresses acting on a cross-section plane, Effects of
transverse normal stresses are generally ignored. It is convenient to use principal
axes and to separate general loads into compenents parallel to principal planes.

The material properties of the beam, originally given by a yield functio:n
and stress-strain relations describing the elastic and plastic behavior, are trans-
lated into corresponding terms involving the stress resultants., In the simplest case
of transverse loading only one bending moment M must be considered, so that a
diagram of ¥ as function of curvature « takes the place of the simple tension-
compression stress~strain diagram, as in Figs. 12, I3, This exhibits an elastic range
vwith slope EI, a yield moment My’ and a strain-hardening curve, For certain highly
ductile structural metals it is a good and conservative approximation to replace the
rising part of the curve by a horizontal line at a magnitude M5 this constant
moment magnitude represents the limit moment or fully plastic moment of the methods
of plastic design of beams. As indicated in Sections 5 and 6 of Chapter I, most

structural metals have different plastic behavior at high strain rates than they do

under static conditions, and this is reflected in the M - x curve, which row devends
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subsequently.

on the curvature rate «.

Even if the loads are parallel to one principal plane, it may not be
permissible to disregard the shear force and normal force in the plastic behavior.
There is in general loading always an interaction between M, Q, and N, but the
importance of taking account of Q and N depends on their magnitudes relative to M.
These, in turn, depend on the geometry of the beam (length-depth ratio, etc.), on the

constraints, and on the loading intensity and distribution. Work of Drucker (1956)

VR b sieeihiae L u.‘MﬁwﬁWﬁhuﬂi :

and Neal (1961), among others, has dealt with such interaction relations. Very few

s tudies have made use of them in dynamic problems, and these will be discussed

The response of a beam to a severe dynamic load is a complicated set of
phenomena. Elastic vibrations are excited. At certain times and locations the yield
moment of the beam will be reached, Then plastic deformation occurs in reéicnsiwhose
boundaries move, and which are separated by regions where the yield condition is not
satisfied and hence elastic action continues. The problem of determining in detail
the simultaneous elastic and plastic actions is obviously beyond conventional analytical
techniques, It can be handled only by completely numerical procedures, with difficult

questions as to stability and convergence in choosing intervals remaining to be

answered, or by special analytical methods appropriate to special ranges of conditioms.
The above refers to sclutions in which deformations of the beam at all points
along its length are determined; that is, in which the beam is treated as a con-

tinuum either by differential or by difference equations. Because of the difficulties

indicated, most of the work concerned with design problems has replaced the actual
beam, frame,6 or other structure by a model consisiing of an "equivalent' mass-spring
system of one degree of freedom, or a small number of degrees of freedom. This %E
approach will be valid if there is actually one mode (or a small number of modes) of

deformation (elastic and plastic) which predominates over all others. If interactions

T oeER
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between many modes need to be considered, this method becomes extremely cumbersome, and
there is little evidence in the literature as to its reliability. However, it is
essentially all that can be done in most cases of complex structure,

In the following, main attention will be given to the concepts, the main
results, and the limitations as to further extensions (as they appear to the writer)
of the approaches to dynamic plastic anmalysis of beams, A few investigations with a
close combination of analysis with experiments have been published, These are mentioned
at appropriate places and will be discussed more throughly in Chapter III. Little
attention can be devoted to methods which treat a complex structure as a one-degree-
of -freedom mass-spring system, since almost no test data is available in the open

literature with which such results can be checked.

2. Elastic-plastic Analysis

There is only one "exact" theory for a material supposed to have a general
elastic-plastic stress-strain characteristic. This theory was developed by H, F.

Bohnenblust (Duwez, Clark, and Bohnenblust, 1950), and is based on a result obtained

much earlier by Boussinesq (1885). It rests on the reduction of the partial differential

equations of the beam motion:

2
29.+ m 2—% = 0

(2.1)
Ix at2
_aM
Q=33 (2.2)
32
M= M) =M (—g) (2.3)
ox

(where Q = shear force, M = bending moment, k = curvature, y = transverse displacement)

to an ordinary differential equation thircugh the introduction of the new independent

. 2 . c
variable cx”/t where c¢ is a suitable constant. Bohnenblust showed that
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t
where
0 = x2_ a2 = [EI
- : T Vm 2.
ua?t m (2.9)

For any relation M = M(x) between bending moment M and curvature « the system of
Equations (2.1) - (2.3) can be reduced to an ordinary differential equation for a

new dependent variable S(n),

2
d’s de .
—3 + EI aw S = ( (2.6)
dn
where
3 2

_ 2a _ 2a dM

S(n) = T Yt Q= ET—-Vn an (2.7)

Formulas giving M, Q, ¥, and y in terms of definite integrals involving S(n) are
easily derived, and in principle a complete solution for a general elastic-plastic
material can be obtained. However, the Bohnenblust solution involves the following
limitations:

1. The solution is for a constant velocity impact; the beam being at rest

for t < 0, the force P required to produce the impact velocity

V° at x = 0, t > O is found to be

[72]

(0

e

(2.8)

o)

n
el
gl

The impact velocity is related to S(n) through
-
. _ 31 $'(n)
Vo © 73

. dn (2.9)
n

=]

The solution holds only for the above conditions; unloading cannot be

treated.
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2. The solution holds for an infinite beam struck at x = 0; no modification

to treat finite beams seems possible,.

Solutions of the Bohnenblust type have been given for semi-infinite beams
under constant velocity impact with constant moment (Conroy, 1956); and a number of
comparisons have been made between elastic-plastic and rigid-plastic beams (EI » =),
and between perfectly plastic and linearly work hardening materials (Conroy, 1952).
These comparisons show the spread of deformations for particular conditions, but do
not seem to provide any general guide-lines for other loading conditions on finite
beams.

In Section 1 of Chapter IIl some results of Bohnenblust's solution will
be compared with those obtained by simpler approximate methods for the same problem
and for modified problems which may more realistically represent conditions in the
experiments described by Duwez, Clark, and Bohnenblust.

An elastic-plastic theory for dynamic loading which is less exact (in
general) but much more widely applicable and useful than the Bohnenblust type of
analysis, is that due to Bleich and Salvadori (1955) and applied later by Thomson
(1954), Allen (1955), Alverson (1956), Seiler, Cotter, and Symonds (1956) and others.
The basic ideas of the method are that the motion of the beam (or other structure)
is elastic during the initial instants of motion and is described by an analysis
in terms of a certain set of normal modes; this initial elastic phase ends when
the bending moment at some cross-section reaches the limit moment M_.

The method is
simplest to apply if the beam is made of perfectly plastic material with M = M

while plastic flow occurs. If the material is assumed to be of this type, the

______ se which again is described in
termns of normal modes, but which in general requires different normal modes than those

of the initial elastic phase because different end conditions must be satisfied. The
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cross-section where the limit moment was first reached is assumed to remain at Hp during
this phase, while on adjacent cross-sections the yield moment is not reached, so that
equations of elastic beam dynamics apply. Thus, there is one cross-section at which
plastic deformation occurs, all other parts of the beam belavirg elastically; the section
where M = Hp behaves as a plastic hinge, plastic deformation in the beam being concen-
trated at this point. The hinge is assumed to remain statiocuary. Continuity of displace-
ment and velocity exists across the hinge, but not of slope angle 6 and angular
velocity é. The slope angle © at the plastic hinge is not directly related to the
moment there. The hinge remains active, and plastic deformation continues so long as
8 > 0. When 8 =0 the plastic hinge disappearc provided for subsequent times M < Mp'
Further motion then obeys equations of elastic motion.

If the beam is made of a work hardening material the plastic deformation
cannot be taken to occur at a single isolated cross-section, as is customarily done
in theory of ideally plastic structures (ignoring the implication of infinite strains).
The plastically deforming region must occupy a finite length Ax across which the slope

angle change A8 is

Ax m
ne = | 3% g = | X
40 = I dx = 3 dM (2.10)
<M
o P

where Hm and Mp are the bending moments at the ends of the plastic segment, If the
length of the plastic region is assumed to be constant, an analysis of Bleich-Salvadori
type can be carried out in terms of normal modes, although with much more difficulty.
The method does not seem to have been applied except for an ideally plastic material.
Strain hardening can, however, be taken into account very roughly by taking Mp larger
than the actual yield moment, by an amount depending on the deformation.

The method is easy to describe and straightfoiward to apply, in principle.

In practice, there is a considerable amount of labor in determining the successive sets
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of normal mode functions, and the calculations of the time when 6 = 0, and of the
permanent angular and lateral deformations are tedious. The series for the deflec-
tion usually converges rapidly, but the series obtained after differentiations to

give 6 and 6 converges more slowly or may fail to converge.

Elastic-plastic solutions have been worked out in terms of normal modes

for the following problems:
Table II 1

ELASTIC-PLASTIC SGLUTIONS OF NORMAL MODE-PLASTIC HINGE TYPE

CASE END CONDITION LOADING REFERENCE
- Vo n
(a) free-free impulsive, y(0,x) = —5(1 - cos zﬁ) Bleich & (1955)
(span 2L) (x as in Fig. II 1) Salvadori

{(b) " v, sin g%i Seiler, Cotter & (1956)

' Symonds

(c) simple supports uniform load: rectangular

Pulse Seiler {195u4)
(d) simple supports mid-peint force step functions Thomson {155u)
(e) clamped mid-point force: step functions Thomson (19ty)
{f) cantilever impact: base changes velocity Alverson (1956)

linearly in time,
then remains constant.

(g) cantilever same as (f)

2 Stallybrass (1960)
with mass at
tip

(h) cantilever uniform pressure: triangular Allen (1955)

(blast)
pulse

SR
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As an illustration of the method just described the solution of case (b)

above is presented. The problem to be considered is the elastic-plastic response of a

prismatic beam of span 2L and flexural rigidity EI with the following initial conditions

con displacement and velocity:

y{x,0) = 0; 3

The beam is assumed to be simply supported, and the boundary conditions are written as

follows:

y(0,t) = y(2L,t) = 0
)2 32 (2.12)
——%-(O,t) = —«%-(2L,t) =0
ax ox

Fig. II 1 shows the initial beam configuration and positive directions of co-ordinates

and mcments.

The analysis is based on the moment-curvature relationship shown in Fig. I1 2,

and the equation for the elastic phase of the

2" 32
e =LsmL=o0 (2.1
Ix at
Solving Equation ({2.13) with Equaticns (2.11) and (2.12}, we obta. .
wv k12 %
y(x,t) = —=— sin T sin 5 (2.14)
L 4kL
where
2 _m
k° = 5 {2.15)

As stated previously, the elastic phase ends when the maximum moment in the

9y = V si X
3t (x,0) , sin

2L

motion is taken to Lw

ot e

(2.11)

t
Ly
Al
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beam reaches the limit moment Mp. This occurs at x = L at a time t, such that

M(L,t.) = M_ = -EI™-L (L,t)) (2.1€)
1 2 1
x
or, using equation (2.14), when
M wztl
=L = sin = (2.17) '
EIkV° wkL?
From equation (2.14), the conditions at time t, or the initial conditions for the elastic-
plastic phase are
o uv_kL? o
‘ y(x,tl) = -~—;3~» sin 5 sin n) (2.18)
il = 1 E R
5T (x.tl) Vo sin s cos ny (2.19)
where
ﬂ?tl
a = Ty (2.202
i 4kL
Fig. II 3 shows the assumed shape of the bLeam for the elastic-plastic phase

with a plastic hinge at the center where rotation is unrestricted while for the remain-
ing half beams of length L, equation (2,13) applies. Therefore, equation (2,13) must
be solved subject to the initial conditions given by equations (2.18) and (2.19) and
the following boundary conditions:

n
&

y(0,t) = 3—% (0,t) = 0 (2.21)
Ix

a2y
-EI-—%% (Lyt) = M

s

=0 (2.22)
9x |3 ax
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The final general solution is obtained in the form

il a1 s e o o b, e SR

y = 9(x,t) + Y(x,t) (2.23)
where

MLl s 2 3x(t—tl)2 -

Vo) = R X 1Ty (2.24)

4O0L 4L 2k"L
Y(x,t) = [Ao + Bo(t-tl)]x + E Xn(x) .
| n=1
A:(t~tl) J\:(t-tl)
[An sin ~————+ Bn cos —— ] (2.25)

X (x) = sin A_L sinh A x + sinh A L sin A x
n n n n n

and An satisfies the equation

tanh A L = tan A L (2.26)
n n

so that A L 2 onm o+ n/u,
The coefficients Ao' Bo’ An’ and Bn, are evaluated in the usual manner by using the
initial conditions given by equations (2.18) and (2.19).

For the foregoing solution to be correct, the bending moment lM(x,t)! < Mo
at all points in the range 0 < x < L, and the sense of rotation across the plastic

hinge must agree with that of the bending moment at the hinge. The latter remark

indicates that the s-lution is invalidated at a time tf such that

2
.?;)'_.. (L.fc) = 0 (2.27)

L2

By solving equation (2.27) an expression is obtained for the time t ,and

f
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substituting this value for t in eguation (2.23) the maximum defleciizn &, and slope §

f {
at midspan are given as {ollows:
£l 48 39 9 24 '2  ug — !
7 S T T thEgcao - w e tw VI
M L ] n n
p el
4a2 ua* '
n 1/ .,
) o sin 5 ﬂ, "q « COSs 5 Mg
-n*/35°1 1 i - - I - (2.28)
=] 15 =
n=i a:(l o . ) n=1 a: (1 - n )
! l6a. 16a
n
EJ _~8 39 5 , U8 o= ' 24 T2
VL% " Tt mo gt mr sl g
n n
4‘2 ' an '
. n
) © sin 7 Ylf "u - con "-?‘- nf
- VESTD L et S - (2.29)
=1 4 “ n=l e a
. Phala - ) a, (1 - -)
- n i} &
F 16a 1fa
i n
Ei Lol )
1] where n_ = - (t,. -~ t.) ' (2.30
f 1
!g £ kLl f 1
|
i mE1Y 2
{ and § = —° (2.31
{ 2M

In the above equations the approximations that a = AnL = nn + n/4, tanh a = 1, and
sinh a, »* 1 for all n are made.
The 2lastic-plastic solution is plotted ir Figs. IT 4 for varicus vaiues of

§ which is the ratio of the initial kiretic energy to the maximum elastic energy

capacity of the beem. With the exception of Fig. II u(a), all the other figures show

a point of zero slope before the absulute maximum point of the total plot. The
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First max. of 8(t) curve Absolute maximum
1 M 4.
s R L, M MBe Mo Br , e Mt Mok
WL f 2 2 2.3 ML f 2 p) Z
r MPL mLV, mL Vo ) MpL mL.V0 mLVo
1 t..08 0,284 0,654 0.142 0.327 0.284 0.654 0.lu4z 0,327
2 1l.24 0.62 0.998 0.155 0.249 0.82 1.168 0,205 0.292
5 4,0 2,00 2.34 0.200 0.234 2.34 2.64 0.234 0.264
13 11.9 5.96 6.27 0.229 0.241 6.30 6.59 0.242 Q,25u4
=« Zos oo Ze oo Z2s - 1) o0.2u6 0.2u6
n n n
"Single-
hinge"
Rigid-

Plastic HﬁiS %x2s 0.25% 0.25

Rigid- 1
Plastic Euzs 0.239 0.167 0.239
(28)
mELV EI8 M
S = Ll;o; R = 2 f; -—p—e-g- = EI%T:. etc.
ou? M L nLv? 25M,
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com putation of the final angle Of is based on the time when the slope of the curve of

8 versus time first becomes zerc and, therefore, in many cases, it is likely that the

. theory will not give the correct maximum. No attempt was made to investigate this
phenomenon, but it does indicate another elastic phase followed by an elastic-plastic
phase which would require a second set »f eigenrunction solutions. Results are
presented in Table I1 2 for both the first maximum and the absclute maximum peoints
of the curves, It is axpected that the corresponding maximum values give the range
within which the dactual maximum deformation occurs.

The problem under discussion was also analyzad by Seiler, Cotter, and Symonds

(1956) assuming the beam to be composed of a rigid-plastic material. In this case

[T

elastic deformation iIs neglected, arnd the moment-curvature relation is as illustrated
4 by the dotted line in Fig. II 2. It is shown that, in order to satisfy the boundary
| conditions at the supports and the assumed moment-curvature relation, the beam must
deform with rigid segments at the supports separated by a central finite plastic zone.
The plastic zoné has a constant moment Mp and the plastic interfaces separating the
three segments travel towards the center of the beam. In the final phase of the

deformation process the central plastic zone reduces to a point hinge at the center,

and the Lielf beams rotate about this hinge until all vhe energy is absorbed. The

final angle Of of the tangent line of the middlie is given by

This approach to problems of dynumic loading is outlined in greater detail in a later

section of this survey, but for the purposes of comparison,results computed from

equaticn (2.32) are included in Table IT 2 under the heading "rigid-plastic."”

Bleich and Salvadori suggested an "upper bound" solution which assvmes that

I
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the initial kinetic energy is completely absorbed by a single plastic hinge at midspan.
This is a simplified rigid-plastiec solution, and the angle of rotation at midspan is

readily obtained from the following equation

- 2
1/2 mLV0 M (2.33)

Deformation values calculated from equation (2.33) are also given in Table II 2. It

must be noted that for some problems equation (2.33) may not determine an upper bound.

Discussion

The elastic-plastic method of Bleich and Salvadori only applies when the
plastic hinge is stationary and when the length of the hinge may be neglected in the
analysis. Thenretically, non-uniform or unsymmetrical loading arrangements can be
considered and also force pulses of various amplitudes and durations may be treated
but computations may become trcublesome, and some series of the solution may not
converge or, at best, converge very siowly. An extension to the elastic-plastic
theory has been propased by Bleich (1956) by which many hinges at various locations
may be included in the analysis. This is accomplished by using a numerizal method to
find the contribution of the rotations at the plastic hinges to the total deformation.
The same approach is employed by Baron, Bleich, and Weidlinger (1961) in describing
a completely numerical solution and is presented in Section 3 ¢f this chapter and is,
therefore, not included here.

The fundamental difficulty of a Bleich-Salvadori type of sclution is that it

iarge loads, i.e., viglation

of the limit condition MD >{4jover a finite section. 1In the problem under discussion,
the authors (Seiler, Cotter, and Symonds) examined the plastic-moment condition at
sections along the beam. By retaining only lealing terms in egaaticn (2.25) an

approximate expression for bending moment is obtained as folliszwe:

ki i v

T
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2 =~ sin a, sinh a.,f + sin a,€ sinh a .
. 4 ?
_;%_=%£_%{3+ V251 I~ ¢ 1 3; 1 - sin —5 a;n
P V2 3 n e n”
al {1 - m ) sinh dl
lfial_1

sin a, sinh a.& - sin sink a
2% a 2

t
+ 2 Z sin E——~a2n } (2.3u)
a3 sinh a ﬂQ 2
2 2

x ! n2

where £ = = a s nm + n/4,n = —=(t - t,)

L n 2 1l
UkL

Using equation (2.34), Figs. II S5(a) and II 5(b) show plots for twoe values of '
with M/Mp as ordinate and § as abscissa. These equations show , in an approximate
manner, that the limit moment will be exceeded at £ = 0.9 when § » 1.2 and at § = 0.5
when S > 3.9, TFor quite reasonable values of S > 1, these equaiions and curves
demonstrate that the limit moment will be exceeded over an appreciable length of the
beam.

For large emergy ratios, i.e., for S approaching infinity, the elastic-
plastic solution should appreoach the rigid-plastic solution, but referring again to
the example just outlined, the values 0.2u46 and 0.167 given by the respective
theories for Mpﬁf/mLV§ are in poor agreement, The "single hinge" rigid-plastic
sclution gives a corresponding value of 0,25 which agrees well with the limit of the
elastic-plastic theory, but this agreement is to be expected since both apprcaches
are based on the single hinge assumption. The limiting value for deflection by the
elastic~plastic theory is 0.246 which shows better correlation with values of
0.239 (rigid-plastic) and 0.25 ("single hinge" rigid-plastic) than the values for
angular deformations show.

It must be concluded that the elastic-plastic solution, as presented, is

only strictly true for deformations occurriag in the range S = 1 when elastic

effects need to be :onsidered. No experimental work has been carried out with the
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testing the elastic-plasiic solution in this range of low intensity

loading. The tests results of Aspden and Campbell ('966) menticned in Section & of
Chapter I indicate that some caution may be required in choosing a vaiue for the yield
moment. They showed for mild steel that the transition from elastic to plastic states

of deformation in bending may occur at an enhanced value of the static plastic moment

where the yvield curve shows a sharp peak. This increase in yield varies with the rate

of loading but even for low rates the effect may be considerabie, However, these

effects, as noted, depend on the prior treatment of the material and on the geometry

of the structure in complex ways that have received little investigation.

3. Numerical treatmonts

The diffisulties of elastic-plastic analyses of the types outlined above are

such that the analytical solutions must be replaced by schemes of numerical solution

of the dynamical equations. Quite general numerical schemes have been described by

Newmark (1$59) and by Baron, Eleich, and Weidlinger (196l1). These schemes both replace

the actual structure by an assemblage of discrete masses connected by various kinds of

structural elements; they approach the solution in different ways, which will be out-

lined. A basically different approach is that in which the partial differential

equaticns of motion are first written and then reduced to systems of difference

equations which are then solved by appropriate techniques. The only complete solution

of this type for a beam seems to be that obtained by Alverson {(1956) for a problem

of impact of a cantilever.
More recently than Newmark and Baron et al, a group under Pian and Witmer in
the Aercelastic and Structures Research Laboratory at Massachusetts Institute of

Technology has devised schemes for the numerical solution of dynamic load problems of

beams, arches, plates, and shells (Witmer, Balmer, Leech, and Pian, 1963). Their

numerical technique was originally programmed for the MIT 7090 computer, and is evidently
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highly successful, in view of the generality of the treatment, the complexity of the

: problems solved, and the apparently efficient use of machine time. Witmer et al have
included not only elastic deformations but finite changes of geometry, strain hardening
and strain rate sensitivity in the analysis. Their finite difference scheme employs

- a step-by-step explicit method, the structure being replaced by a finite number of

E masses and connecting links. The connecting links are chosen to consist of two or more

langes carrying tension or compression stresses, separated by web material which carries

shear stresses but is assumed to undergo no shearing deformation. With this model,
the use of a forward difference scheme requires restrictions on the choice of the time

interval At in relation to the space interval &x, in order to achieve stability in the

ps—

computations, i.e. in order to precvent errors from propagating with increasing magni-

b €

tude. Pian, Witmer, and co-workers have not analyzed error propagation thecoretically,
but find empirically that At/A&x = 0.7/'Co gave satisfactory results, where C_ = vE/o
is the speed of elastic waves of plane stress. This direct proportionality between
- At and Ax is apparently due to the choice of model.
We shall not attempt to describe the MIT techniques in detail, even though

they are the most versatile of those that have been described. Reference will be

made later to one result presented recently in discussion; this concerns the problen

of a beam subjected to impulsive lcad at the tip, and will be described in connection
. with test results on beams and on the inclurion of rate sensitivity of the yield stress.
. We shall summarize the approaches of Newmark (1959) and of Baron et al(1961)

in order to iilustrate some of the probliems arising in numerical treatments of elastic-
plastic problems.

Referring to Mewmark's method, a distinctive feature is its viewpoint of
separation of the dynamic problem from the one of structural properties. The mass of

- the structure is first concentrated in a finite number of mass particles. There are

no rules for imaking this substitution; an engineer must largely depend on intuition.

[ WY
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= At any rate, there is then a finiie number of degrees of freedom, and a scalar equation
3
1 I of motion for each degree of freedom. HNewmark writes the typical equation of motien in
v : -
a the form D
; ' P(t) - R = ma (3.1)
-
: l where
% . a is the acceleration along an axis corresponding to a particular ’
f
: degree of freedom.
. m is the mass of a typical mass particle.
: P(t) 1is the external force component applied along the axis for *

which a is defined; P(t) is assumed to be known.

- R is the resisting force exerted by the structure, along the

axis for which a is defined.

R A

Newmark's method depends on the concept that the complete system of resistive

forces, of which R is a typical member, are all determinable at any given instant

from knowledge of the current geometrical configuration, the history of deformations,

and the known properties of the materials. The computation of the system of resistive

I N R A S S

forces requires the soluticn of equations of static equilibrium, even though viscous .
or other rate dependent physical effescts are involved. w

The integration of the equation of motion (3.1) is performed by an iteration
scheme. Consider that the ¢onfiguration of the structure is known at time tn so the t.

displacements and veloci:ies areknownat all of the mass points, together with the

resistive forces Rn of the structure. Given displacement En, velocity v, and acceleration

the , is t i : i
a, at tn’ e prohlem is to determine Eh +1, vt 1 at time tn +1

+ 1 n (3.2) ‘.'
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Newnark discusses the following difference formulas:

r - - 8 - 3
\ v ¥ (1 - v) anh + ya b (3.3)

o
]

1 2 2
= . 4
{n + vnh + (2 B) anh + Ban+lh (3.4)

where y and B are constants to be chosen so as to facilitate the computation,
Postponing for the moment discussion of the choice of y and B8, the iterative

scheme is as follows:

'
1
1. let a1 be a guess for a1

L t
§ 2. compute Vel from equation (3.3) and En* from equation (3.4)

1

A
— using a1 Voo £

. 3, from knowledge of the configuration of the structure (all values of

13

1
havi been ietermine t respondin
ntl and Voel ring been found), determine the corresp g

]
resistive forces R .
r n+l
"

4. calculate a .. by means of equation (3.u4),

_ 1 .
%nel m ‘Fnel Rn+l) (3.3)

The cycle is repeated, if necessary, until sufficiently close agreement is obtained

t
between the guessed value a nel”

n+l and the computed value a

The choices of h, vy and 8 are governed by considerations of convergence and
stability. Suppose the actual motion is that of a simple harmonic motion with radian

2 . 1]
frequency w; then a = ~w"¢§. For a choice a for an we have

+1 +1

_ 1 2 2
£ = En + vnh + (2 8) h a + gh a1
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S 2 1 a2t 2.2
= -w [E; + vnh + (5- &)h aEJ w Bh"a’

The actual value a .1 1S given by

2.2
- w gh ay

- 2 1 2
a4 =W [—tn + vnh + (3 - B)h a, +

The ratio p of the error of the derived result tc the error of the assumed result is

a a
p = _%ﬁﬂ;_._llil_ = —wipn? (3.6)

a a
n+l n+l

Convergence of the iteration scheme requires lp[<l. Hence we have the result

that for convergence

mlwi

2.2 h 1
Bw h < 1; or T < 57 v (3.7)‘

where T = 2nr/w is the period of the motion. TFor a complex system, T must be taken as

the smallest natural period of vibration, i.e. the period of the highest mode of
vibration. If plastic deformation occurs, the periods of natural vibraticn increase;
hence h can be correspondingly increased.

Stability is similarly studied under the assumption that the system is in
simple harmonic motion with radian frequency w, so that a = —w2£. Appropriate
equations of the type of equations (3.3), (3.4) can be combined to obtain the following

difference equation in £:

2. 2 1 =
§e1 = (2 - a A AR (y - 5)(Cn - gn-l) =0 (3.8)

where

o e et
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The last term on the left hand side of equation (3.8) is proportional to the finite
difference formula for a velocity, and hence this term corresponds to a viscous
damping. Since the system is assumed to be executing simple harmonic motion and to
lack physical damping, the damping term in equation (3.8) is spurious. Elimination
of the unwanted damping term therefore requires the choice y = 1/2, and the difference
equation for simple harmonic metion is then

2 =
€ - (2-a) g +E =0 (3.10)

If one looks for a solution of form &n = Ap, one finds thart

2 w2h2

a = —

= < b (3.11)

1 + Bu'h”

is the requirement for A to be complex and hence for the sclution to be stable.
Summarizing, in Newmark's method the iteration scheme makes use of the
following difference equations relating time t, acceleration a, velocity v, and

displacement £:

h = te -ty (3.12a)
a =X[p (t) - R (D) (3.12D)
n m|n n )
- 1 i 3 .
Voel v t §~anh * 3 an#lh (3.12¢)
£ = £ +vh#+ (l - BYah' + Ba h? (3,124d)
n+l n 2 n n+l )

where the time interval h and the constant B are related by considerations of

convergence and stability, assuming the system to be executing simple harmonic motion
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with period T = 2w/w as follows:

h 1
Convergence: 7 3% /R (3.13a)
Stability: Rl L (3.13b)
Y1 - 4R

The two criteria give limits as indicated in Table I1I, 3,

Table 1I 3

Convergence and Stability limiis

8 0 1/12 1/8 1/6 1/u
Limit on h/T
Convergence h/T < = 0.8 0.u50 0.389 0.318

Stabilit; h/T < 0.318 0,389 0.u50 0.551 «

The convergence and stability limits, it should ke remembered, are derived
from consideration of motion of the system in simple harmonic motion with period T.

For an elastic system with many normal modes, T must be interpreted as the shortest

natural period. In more complex problems inv~lving plastic deformations, strain rate
dependence, geometry changes, and other physical effects which preclude modal analysis,
the above can only be taken as a rough guide. As a matter of fact, although Newmark's
method has been applied to many problems of elastic and elastic-plastic deformation,
there seem to be no published accounts of application to problems where geometry

changes required changes in the equilibrium equaticns and in tne expressions for

material benavior, or to prablems invelving piastic de

ormalivn except of ideally
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plastic nature. Because of the very general conceptual nature of the method it should
in principlie be applicable to such more general problems. lowever, ques-ion of conver-
gence and stability remain to be investigated for these problems.

Less general but more direct and simple for many problems are finite differ-
ence methods of more conventional type. An example of such a method is that described
by Baron, Bleich, and Weidlinger (1961). A typical beam problem is indicated in Fig. II
6(a). The distributed beam mass is first replaced by a number of mass particles. Tae
notation is indicated in Fip. IT 6 yﬁ'Qj' and Mj being displacement, shearing
force, and bending moment respectively. The intervals bj between mass particles can
re chosen arbitrarily, a.d the applied force per unit length qj, mass per unit length
mj, and other beam properties can have any values but are taken as constant in each

interval bj' Thus the equation of motion for the typical mass particle 1is

M. - M, M. - M,
m.y. =P, +Q, -0 =P ¢4t 1 _J _J1 (3.14)
771 ] 1+l ] 3 b, b.
j+l J
_ m, b, + m'+l "+l
where mj = ]2 J ] (3.15)
qQ.b. + q b
- j+1l i+l
Pj S (3.16)

For elastic action at the typical station xj, one introduces an effective stiffness

factor Kj by writing

Y. - Y. Ve y =
M, = Ko, = ¢ 2+E; ( lb -1 —l;*——;zl, {3.17)
3 3 j+l j i+l
where
3 bj + bj+l
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For the sake of illustration, let us tale the simpler case of auriform

beam and let

Then the basic equations take the forms

1l (2
bmy. =P, + =6 M. (3.19)
75 i b J
M, = - % 52 y., M, <M (3.20)
] b J 3 P
2
where § fj = fj+l - 2fj + fj-l (3.21)

Baron et al propose a forward integration scheme using the finite difference fcrmula

|b—-‘

3 l-_-yj(t +h) - ?yj(t) + Y; (t - h) (3.22)

-
£

yj(t) =

=g

P —

where h = At is the interval of the time steps. This corresponds to taking 8 = 0

in Newmark's scheme, and hence the requirement for stability is h/T < 1/7 = 0,318.
Given values at time t, displacement af time t + h can be found from
h2_ 1l .2 N
yj(t + h) = 2yj(t) - yj(t -~ h) + v Pj(t) + S—G Mj(t) (3.23)

When the bending moment as computed from equation (3,20) exceeds the plastic
moment M , at a station Xy s @ plastic hinge occurs at this station, Angalar rotations

at constant bending moment are allowed to occur across a plastic hinge, and the

g BTN AR H-Er e e
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deflections are no longer related to the bending moment through elastic equations such

as equations (3.17) and (3.20). If there is a plastic hinge rotation ("kink") $ at a
v

station X, » @ deflection yj can be associated with this rotation. This deflection can

be written as

yj = b¢kw]k (3.24)

where 2
é ij = -1 for j = k

5 (3.25)
$ wjkz 0 for j # k

Thus bwjk represents the deflection curve corresponding to a kink angle unity at station

k. If hinges at several stations have been operative, their total contribution to the

deflection can be written as

yj = Zk b¢kwjk (3.26)

The total deflection at any instant t «can be written as

€ e
L T YLt Y. =y, + Lbév, (3.27
Yi T Yyt Yy Ty KP4V 27)

The elastic part y; is related to the bending moment through equation (3.20) (or more

generally, equation (3.17)), so that, »sing equation (3.25),

w ey o EL (2 X EI .

nk(t) = b2 é yk(t) oy @k(t) (3.28)
Let us write

¢k(t + h) = ¢k(t) + A¢k(t) (3.29)
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Then

R - £l
Mk(t + h) = Hk(t + h) - T A°k(t) {(3.30)

where
e _ ET ,2 El
Mk(t + h) = - ;3 § yk(t + h) ¢k(t)

5 (3.31)

Suppose all values at time t are known; i.e. yj(t), ¢k(t), Mj(t) are known for all
j. To determine values at t + h, assume (at each plastic hinge station xk) that
A¢k(t) = 0, All displacements yj(t + h) can then be calculated from equation (3.23)

or its equivalent for more general cases, and the corresponding bending moments

Mi (t + h) are given by equation (3.31). Suppose at x, = Xy that M (t + h) < M

k
this is then the correct moment at X0 and A¢k(t) = 0. However, suppose it is found
e
that Mk

(t + h) > M. We then set Mk (t + h) = Mp and compute 4¢(t) from the equation

Bl ae, ()= M5 (t 4 h) - ¥ (3.32)
Then we can compute
¢ {(t + h) = ¢k(t) + 8¢, (1) {3,33)
and
Y3 {(t + h) = y? (t +h) + L b¢k(t + h)wjk (3.34)

. e . .
where the deflections yj are those obtained by assuming that the hinge rotations are

all zero in the interval from t to t + h,

The procedure is outlined above for "positive" hinpe rotatior increments, as
in Fig. I1 6(e). It clearly applies with obvious sign chanpes if hinge rotation
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increments are negative. In any case, 0¢

. e . .
L1 =200 M e ) LM, There s uo

1 . ~ ey
ying the method for an clecironic compu

difficulty about pro
of hinge rotations, of any signs, can be accounted for. However, there has apparcutly
been no attempt to adapt the method to more complicated situtatioms, such as, for
example, to jroblems where geometry changes, axial constraints, strain hardening or
strain rate influences on the yield stress must be considered. An example of the

application of this method will be given later for comparison with a much simpler

approach.,

4, Rigid-Plastic Analyses

The difficulty of obtaining a complete elastic-plastic solution, by either
analytic or numerical means, has forced consideration of simplifications in the govern-
ing equations. In plasticity theory the neglect of elastic strains by comparison with
plastic ones leads to a great simplification in the analysis, and this is a natural
and permissible assumption when the typical plastic strains are very much larger tnan
the largest elastic st;ains. This assumption, namely tnat strain rates are zero except
at points where the plastic yield condition is satisfied, has been made in solving
many problems of static plasticity. Its use in problems of dynamic plasticity seems
to have begun during World War II. G. I, Taylor (19u8) discussed the interpretation
of dynamic compressicn tests in which a projectile is fired into a rigid plate bLy
means of a rigid-plastic analysis, (Lee and Tupper (14Y54)). The use of the concept
of rigid-plastic behavior in beam dynamics was suggested by E. N. Fox (1947). Conroy
(1952) studied in more detail the application of the concept to beam problems by
investigating the infinite-beam problem studied by Bohnenblust} Rigid-plastic
behavior must be regarded as the limiting case of elastic-plastic behavior as tne
Young's modulus E approaches infinity. Conroy showed that for an ideally plastic

material the rigid-plastic solution of Bohnenblust's problem could be easily written

1See Duwez, Clark, and TohnenbLiust (1950)
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in simple closed form. Tor th. same material the elastic-plastic solution was solved
for a succession of values of vEl/m where L1 is the flexural ripgidity, m is mass per
unit length ranging from 167 to lcb. and the results showed a satisfactory appreach
to those of the rigid-plastic solution, LI/m = w. Conroy attempted also to find the
rigid-plastic solution for a linearly strain hardening material, but was unalle to
complete the solution and hence could not make the limiting comparison as for the

ideally plastic case.

A discussion of the general characteristics of rigid-plastic solutions of

problems of finite beams was first given by Lee and Symonds (1952). They showed that,

depending on load magnitudes, plastic hinges and finite plastic regions can be expected

to appear, and in general the plastic hinges and the boundaries of the finite plastic
zones will move during the course of the deformation. Moving plastic hinges and
interfaces between plastic and rigid regions in general involve discontinuities in

the angular velocity and in the transverse acceleration.

The simplest type of rigid-plastic analysis is that in which perfectly plastic

behavior is assumed (strain-hardening is neglected). A large variety of problems

has been solved on this basis. These solutions are extremely simple by comparison witn

elastic-plastic solutions. The question that immediately arises is that of the physical

validity of the results, In the following discussion of rigid-plastic solutions the
main emphasis will be put on indications from theory and experiment concerning the
ranges of validity of this type of analysis. It will be shown that while the ideally
rigid-plastic analysis does provide a simple starting point, the conditions in which

it is permissible to neglect elastic strains are often conditions in which other

secondary etfects become seriously influential. The most important of these secondary

effects, according to indications of experimental investigations, are (1) increase of

yield stress at high strain rates, and (2) change of mode of behavicr caused by finite
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deflections in the presence of constraints.

The great merit of rigid-plastic analysis is that the inclusion of secondary
effects remains feasible in a solution of analytic type, without requiring a completely
pumerical scheme of integration, Apart from strain rate and geometry change effects many
other secondary influences, such as strain hardening, shear deformation, and rotary inertia
can be included in a rigid-plastic analysis. Any of these could be included in an elastic-
plastic solution alsv, of course, but only in a numerical integration process which itself

is by no means straightforward.

One-Degree of -Freedom Systems

The following discussion will consider Ly means of simple examples the criteria
for the neglect of elastic strains, and feor the inclusion of the major secondary effects.

Some basic information about the relation of rigid-plastic to elastic-plastic
solutions can be gained from a study of the simplest structural model, namely a simple
spring-mass system.

With the notation indicated in YFig. II 7, the motion of the mass is governed

by the following equation and initial conditions:

mK = I - Q(x) (4.1)
x(0) = X{(0) = 0 (4.2)

We shall consider motion due to a rectangular pulse of force as i. TIig. II 8 with
magnitude Po and duration 1.

Suppose first that the spring characteristic Q(x) is that of elastic-perfectly
plastic behavior, so that, as indicated in Fig. II 9, curve a, there is an elastic

spring constant k, a yield force Qy' and a yield deflection x . The solution for the

initial elastic motion involves the radian frequency w = % = 2n/T of the mass-spring
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system, and is

p_ . ‘
X = —% (1 - cos wt), Tt < (u.3) !
This holds while the motion is elastic, i.e. for = < xy' Q< Oy' 1f x(ty) = xy and we =
assume that ty < 1, the solution is readily found in stages, putting the right hand :
:
side of equation (4.1) first equal to P0 - Qy‘ for ty <t < 1, and then equal to - Qy :
for 1 < t. The maximum displacement X is then found by setting i(tm) = 0, solving for :

o g

t_ and evaluating x(t_) = x . The final plastic deformation is x_= x_ - x . This
m m m p m y

result will apply to the case when ty <1, i.e. when the load Po is large enough so

o

that the yield condition is reached during the duration of the pulse. Alternatively,
if the load is small enough so the yield condition is satisfied at ty > 1, the maximum
displacement can be found in a similar manner. The results are conveniently expressed

in terms of the following dimensionless variables of the system:

= P _ load magnitude

- voE 6; " yield force

puisc duration time

1
= = - = 2n -
L=t 2 ( natural period of systenm

In terms of the above quantities, the results are as follows:

e v b b

(1) 1€ u <« 5s 1O plastic deformation takes place, regardless of the value of

i
L < u< ——~—l—~—zzp1astic flow begins after the ;

Y2(1 - cos ¢) - l-cos

duration of the loa! pulse, ty > 1, and the final plastic deformation is given by

(2) If ¢ <, and

P. %0 - _ L
" ¥y (1l - cos [) 5 (L.y)
Yy
. (3) I1f ¢ <w and T - cos T <wujor if ¢ > m, % < b < «: then plastic flow

=gy
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begins during the load pulse, ty < 1, and the tinal plastic deformation is given by

*p 1 S 1 2 .
= FM-Ztu Yo <1 (g - ¢) + Fulu - 1), - ) (4.5)

where 1
c°5¢=l":| Q_:C

and -
¢ Z wt = /— Tt
) y m y

The relations between ty' T and u, for ty < 1, 4re illustrated by Fig. II l0.

(4.6)

IfM1 - cos ¢) = 1, then ty = 1; i.e. the time when the yield force is first
reached coincides with the end of the load pulse, and the quantity xp/x is u - 1/2,
To obtain the rigid-plastic solution of the problem, we use the force displace-

ment characteristic b of Fig. II 9, and thus assume that no deformation occurs if

L)

(4,7)

2
H
"
‘g

1
O
(=]
1A
-+
A
—

mx = - Q T <t (4.8)

The maximum plastic deformation occurs at time tm when i(tm) = 0, and its magnitude is

|
x P z x(tm).

The result in appropriate dimensionless form is

.,L
n
~) I Ll
=
—
]
|~
—
o~
w
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We now compare the rigid-plastic solution equation (4.9) with the elastic-

plastic one equation (4,4). We note that

P < Qy. If P° > Qy‘ the plastic deformation is easily found by integrating the equations
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mx mXx_ X 1 ¥
__1?.= V,’ xLz"T':ZR (u.10)
QyT kxyx y Ly
We define the relative error as
¥
X - x
e:--E___F (u,11)
X
F

where
xp = plastic deformation of elastic-plastic analysis

X p* plastic deformation of rigid-plastic analysis
We are interested in how the relative error e depends on the structural parameters
u = ratio of applied load teo yield load, and 1/T = ratio of load pulse duration time
to natural period of the system. In addition to these, an alternative parameter express-

ing the severity of loading is the energy ratio R,

. work done in plastic deformation  _ QxxE (4.12)
maximum elastic strain energy }nyy ’
2

The significance of the parameter R will be discussed later.
In Figs. IJ 11 and II 17 are shown curves of the deflections according to

elastic-plastic and rigid-plastic theory, and of the relative errcr ¢ plotted as

\ t
functions of u and R . The quantity R is evaluated from the result for the plastic
L}

deformation x P as given by the rigid-plastic theory

L] L]

' Q x X 2
R :-i%%_: ?;P-: u{p - 1) ¢ (4,13)
TYY ¥

1 . .
where 3 nyy is the maximum energy that can be stored elastically in the spring-mass

system,

o o B i
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The results for impulsive loading are included in the Figures I1I 11 -~ II 13

showing comparisons. By definition an impulsive load is cne with P(t) and 1 such that
T
T+ 0, P(t)dt + I (4,14)

‘0

The impulse I imparts a velocity v, to the mass, which then moves subject to the initial

conditions and equation of motion

x(0) =0
o) =y =1
X(0) = v, = o (4.15)
mE = -Q(x)
The plastic deformatiens are given by:
{A) Elastic-Plastic
2
m vo 1l
X T o - = 4.16)
P 2Q 2 %y ¢
Yy
(B) Rigid—glastic
2
' m v
.4 =
2Q (8.17)
P y

These results are obtained readily by equating the initiil kinetic energy %-m vo2 to

the plastic work nyp plus (in the elastic-plastic case) the stored energy % nyy.
For the impulsivc load case, the relative error of the rigid-plastic solution

is

e = ol - (4.18)
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where R is the appropriate energy ratio %—m voz/%-xyoy. Note that in this case the

error is always negative for R > 1, whereas for finite i/T the error may either be
positive for all R in the range of significance, or may be positive in one part of

the useful range of R and nogative in the other part.

g o vl e S A

The results shown in the curves of Figs. II 11 - II 13 are of less interest
for their numerical magnitude than for the general indications they give concerning the :
validity of rigid-plastic solutions. The curves show that the rigid-plastic analysis é
predicts a plastic deformation which approaches that cof the elastic-plastic solution

as the energy ratio R becomes very large. However, while the condition
R>>1 (4,19)

is necessary, it is not sufficient. The duration time of the pulse, in relation to
the natural period of elastic vibration of the system, is also very important.

The criterion R > > 1 was proposed by Lee and Symonds (1952) as a possible
means of estimating the validity of rigid-plastic solutions. In static problems one
expects a rigid-plastic solution to be a good approximation if the plastic strains greatly
exceed the largest elastic strains., Other than this, no general rules can be given
for the acceptability of such a solution., The concept of the energy ratio R |is
particularly convenient in problems of plastic deformation of beams because in both
static and dynamic problems the concept of plastic hinges is of enormous advantage.
This concept implies perfectly plastic behavior, and the plastic hinge is conceived as
permitting finite rotations across a plastic zone of negligible length. In fact, of
course, the plastic zone is of finite length and the strains are finite. Estimates of
strain magnitudes in plastic zones can be made, but the basic theory of plastic beam
behavior is convenient precisely because it deals with hinge rotations and avoids

direct consideration of strains, Plastic work done at hinges (stationary or moving)
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is easily computed in dynamic problems, and hence the energy ratio R of the total
plastic work to the maximum possible elastic strain energy is readily computed.

The comparison of solutions of the simple one-degree-of-freedom mass-spring

system shows that the criterion R > > 1 serves best as a giide to the validity of I
rigia-plastic analysis for cases of shcrt duration,high invensity loading. For these
cases the error in using the rigid-plastic method will be less than, say, ten percent
if R is greater than approximately ten, and the plastic deformation will be of the
order of five times the yield deflection. For long pulses, for example with 1/1 = 1,
in order to have agreement to within ten percent the R value must be at least 100.
This implies plastic deflection such that xp/xy is about 50 or greater. However, when
the ratio xp/xy is interpreted for a beam (or other structure) as the maximum plastic
deflection divided by the deflection at the point of plastic collapse when the given
type of load is applied statically, it becomes evident that very large values of
xp/xy predicted by a rigid-plastic analysis wili generally fail to have physical
significance. This is because of the appeavance act large deflections of new physical
phenomena not described in the original equations of motion used in solving the rigid-
plastic problem. Sucih phiesomena may become important as catenary forces, if the ends
are constrained against axial motion; strain hardening; or increases of yield stress
with strain rate.

To illustrate, consider a simply supported beam with uniformly distributeaq
load P, Fig. II 14, For simplicity, suppose this deforms as in Fig. II 15 with a

plastic hinge at mid-point, final plastic deflection ép anc rotation angle Bl at the

support. The energy ratio is given by

(4.20)
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if we take 6p s L91/2. In the elastic range ¢ = 5MmL'/uﬂ EI, where M= PL/8 is the

m
mid-point moment. If we define 6y as the deflecticn just as the plastic collapse load
is reached, this is for the supported beam, &apuicximately
?
5 ML
: > B (u.21}
6y - 48 LI
5 s
®=2F (4.22)
€3,

Thus for the beam, as for the simple os:illator, R = 0(6p/6y). Now the order of magnitude {
of Gy/h, where h i the beam depth, can be found from equation (4.21); for example, let

0 /E = 1.5 x 107%, L/h = 20, Then

I
N

n| on
2|

[N

6 ¥y
L
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1
8

m

Hence if Gp/éy = 50, say, then dp/h = 50/8 = 6. But at a deflection six times the leam
depth, a beam with constraints against axial motions would long since have ceased to
behave like a beam; in fact, as soon as the deflection exceeds the beam depth, motion
would be almost completely governed by catenary rather than beam action. Hemnce a
prediction of 6p/6y = 50 on the basis of simple beam action would lack physical meaning,
and an analysis for a long force pulse by rigid-plastic methods would De useless,
unless it took axial forces intc account.

Apart from questions of additional physical effects not considered in an
elastic-ideally plastic analysis, the question of differences between the behavior of
a system having a single degree of freedom and a multi-degree-of-freedom system is
fundamental tc a study of the prospective validity of a rigid-plastic analysis. One
may accept, as reasonable on physical grounds, the postulate that when far more energy

is fed into any system than can be stored as elastic strain energy, the resulting plastic

R
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deformations can be computed to a good approximation without regard for strains of elastic
magnitude. The question is whether the complex interactions between elastic and plastic
deformations that may occur in a multi-degree-of-freedom system are likely to cause the
approximation to be substantially worse, for a given cnergy ratio and ratio of force
duration to fundamental period, than for a system with a single degrze of freedom.

It should be possible to answer this question adequately for practical purposes
by carrying out complete slastic-plastic solutions (by numerical methods, presumably)
for a variety of structures and comparing results with those of rigid-plastic solutions.
Here we are concerned primarily with behavior of beams as one-dimensional continuous
structures, No calculations of elastic-plastic solutions for beams have been made with
sufficient completeness to permit general deductions to be made about the effects of
elastic-plastic interactions. The few examples for which calculations are available
seem to indicate that no large differences occcur between the closeness of approximation
obtained for multi- and single-degree of freedom systems. Three examples of multi-degree

of freedom systems will be briefly cited.

Multi-degree of Freedom Systems:

(A) Sysicm consisting of two equal masses and two similar springs (Fig. II

16(a) and (b). This is the simplest system of more than one degree c¢f freedom, but the

plastic deformations caused by an impulsive load applied to the outer mass are much
more complicated when the two springs have elastic-ideally plastic characteristics than
for the single mass-single spring system, (Fig. II, 16(c). As indicated in Fig. II 17,
as the energy ratio R increases from zero,plastic deformation in the inner spring
first exceeds that in the outer spring, while for R > 4 the situation is reversed,

Fig. II 18 shows times at which the twc springs start to yield and cease plastic flow,

as functions of R. Nevertheless, the total plastic deformation differs from that
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predicted by a rigid-plastic analysis by only about 10 percent of the total deformation,
when R = 6. As indicated in Fig II 17, the difference between the two results is very
nearly constant, so that the relstive error of the rigid-plastic solution steadily
decreases and is less than 3 per cent at R = 1B8. But the rigid-plastic analysis predicts
the plastic deformation in the inner spring to be zero (the inner mass is acted on by
opposing forces Qy on each side}. Hence although the total plastic deformation is
predicted with Ligt accuracy by the rigid-plastic solution, this analysis is incapable
of accurately dete. .uining plastic deformations in the individual springs; even the
prediction for the plastic deformation in the outer spring is 20 percent in error at
R = 18,

(B) Simply supported beam with uniformly distributed load P(t) having

exponentially decreasing time dependence

-t/t

P(t) = Poe (4,23)

The elastic-plastic solution for the case v = 1/2 Tl’ where T. is the fundamental

1
period of vibration of the beam, was given by Baron, Bleich, and Weidlinger (1961 ) as an
illustration of their finite difference method. The rigid-plastic solution was given
for general "blast type" loading by Symonds (1954); the particular case of exponential
loading (equation 4.23), including consideration of shearing as well as bending deforma-
tions was treated by Salvadori and Weidlinger (1957). Baron, Bleich, and Weidlinger
give results of calculations for initial load magnitues Po up to five times the static
collapse load PC = BMP/L. Formulas for the energy ratio R, and deflection éy at
collapse have already been given, in equations (4.20), (u4,21). Values of R shown

in Fig. IT 13 were computed from the central hinge angle 60 given in the numerical

results piésented by Baron, Bleich, and Weidlinger,

M ’e'o s Fo _

R = _E—MQL = ey Gy/L z 779o (4.24)
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since their calculations take 6ny = ,0027.

The curve marked "Simplified Elastic-Plastic" was derived by Baron, Bleich,
and Weidlinger by using the fundamental mode of elastic vibrations during the elastic
phase of motion, and following this by a single hinge rigid-plastic solution with
initial velocity chosen so that momentum conditions are matched. This apprecach is a
sound one only for problems in which a single mode predominates; it works well in the
present problem, for example, but not in the previous example (A).

(C) Cantilever whose base is subjected to specified motion (Fig. 1I120),

namely with displacement and velocity as follows:

y(x,t)=yt(x,t)=0, t <0, 0<x <L
Votz
(0,t) =
yeo.t) =
0 <t < ¢t
- =0

v
yt(O,t) -¥°to

_ t,
y(0,t) = Vit - 9 1

\__\‘
+

v

o»

yt(U,t) = Vg

This is a problem of impact which has been used in experiments., (In general it is
easier to impese and measure motions of a specimen than it is to apply forces of known
distribution and time history; hence problems of this type are advantageous for
laboratory tests).

The elastic-plastic analysis of thi: problem was carried out numerically by
Alverson (1958), who made use of the fuct that the system of elastic beam equations
(due to Timoshenko) which take account of shearing deformations and rotary inertia is
a totally hyperbolic system. Motions of the beam were therefore determined by finite
difference techniques based upon the network of characteristics of this hyperbolic

system; the characteristics are four families of straight lines with slopes dx/dt
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proportional to 1) and tc,. where ¢ = YEfp and ¢, = YkG/p are speeds of uniaxial

tension and simple shear waves, respectively, in a bar.

Alverscn carried out complete calculations for several ]

s
P SO
£ which o

cases, o
was chosen to have non-dimensional parameters corresponding to ranges used in experiments

conducted at Brown University. Two such narameters specify the impact characteristics,

namely the energy ratioc R and a parameter B proportional to the base acceleration

¥ftoduring the impact. Numerical values used were
mLV?
F = —A = 8,33

MQL

B
EI

t
. o _ R -
. T3 /-—---—-—2 0.0065

f1
<2

= 2

Alverson's results for the above case showed a remarkably complex pattern of

elastic and plastic deformations. The main plastic deformation is the angle of rotation

60 at the base. However, the numerical analysis showed that this not only tock place in
an intermittent manner, but was part of a reginn of plastic deformation at the base whose

size varied in a highly irregular way; even the sign of the rate of plastic deformation

was found to reverse at certain localities near the base. In addition to the main

o ke kI
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plastic deformation near the base, there was a secondary region of plastic flow of
opposite sign in the interior of the beam, This again was of an intermittent nature,
he piastic region moved backward and forward irregularly. Some
idea of the complexity »f tbe plastic deformation is given by Fig. 1I, 21(a), (b}, (c),
whers the times and signs of plastic flow are shown for various stations along the beam
length.

Fig. 1I<0(s)shows the plastic angle at the base as a function of the parameter
g = mLQV/Mﬁt. {This solution was obtained by D, S. Green (1954), while the limiting
case T + 0 was treated by Symonds and Leth (1954). At B = 250, the rigid-plastic
sclytion predicts a non-dimensional plastic deformation of about 0,39, whereas
Alverson's elastic-plastic result is about 0.30, corresponding to a relative error of
about 30 per cent, The ratio 'r/Tl should have essentially the same significance as
in a problem of loading by a force pulse. In Alverson's example 'r,/'rl g .007, so that
the requirement that the time ratio be small is apparently satisfied. The agreement
of the plastic-rigid solution with the complete elastic-plastic one in the case is
worse than in the examples (A) and (B), and this seems attributable to a more complex

interaction between elastic and plastic deformations.

S. Plastic Moment Interactions

It is never strictly correct to ignore stresses in a beam other than bending

stresses, One must consider interactions of bending moments especially with axial
forces and shear forces. (In a general one-dimensional structure, we would also have
to consider torsion, and bending moments and shear forces in twoe principal planes).

But in beamswith loads in a principal plane, stress resultants are M and Q (shear force)
plus N (axial force) if deflections are not infinitesimal. Also, in an arch or ring

N would appear from the start {even for infinitesimal deflections) as well as M and Q.

Two questions: (1) when do Q and/or N have negligible effect on plastic

4
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moment; and (2) when Q and/or N are not negligible, how can they be taken into account?
The important quantities governing shear and axial force are a shear force
Qp and an axial force NP' which represent, respectively, the limiting magnitudes of
shear and axial force in a perfectly plastic medium, in loading hy "pure shear'’ or by
simple axial force. 1In a beam problem, the ratic of the actual shear force Q to Qp'
and of the actual axial force N to Np are related to the ratio M/Mp, when plastic
deformation is occurring, by an effective yield condition. In other words, plastic
deformation in a beam is governed by an interaction between M/Mp, Q/Qp. and N/Np. This
interaction is always present in practice in beams. There are indications from the
few problems that have been treated (mostly analytically, not experimentally) that the
interaction is more serious in the case of dynamic loads than for static loads.

We may write in general

B e B 00 b it bl

Rectangular Section I or Box Section
0V K AH
Q = Ky A s =1 ks =%
N = g A
P y
MP = KboyhA K, = 1/4 Kb = 0.4

where A is the total section area, Aw is the web area, and h is the section deptn.

There is a true "interaction relation" in sense of yield condition relating
M and N at any point (cross-section) of a beam, irrespective of general loading, support,
etc. But no such interaction relation in this sense exists for M and Q; we cannot
consider just one cross-section of a beam, but must consider the whole beam: loading
and support conditions. Published "M-Q interaction" curves all refer to a particular
problem, in most cases that of a cantilever beam. (Some published M-Q curves supposed to

give lower bounds on actual M, Q are wrong, since not all conditions for a lower bound are
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satisfied : examples are given by Ncal 196la).

For brevity call "local" the interaction curve which is derived by considering
a single typicai cross-section of a beam. As stated, a local interaction curve relating
M, N can exist (correct), but no such curve relating M, Q can be strictly correct.
Despite this, one may derive an 1i-C curve, say for a cantilever statically loaded by an
end force, and use it for estimates for other stalic cascs and for dynamic cases.

This {s the procedure that has been followed.

(..} Moment-Shear Interaction

Obviously any results about importance of shear forces and shear deformations
in plastic deformations due to dynamic loads, obtained by using an interaction formula,
are highly approximate. Hence, we should not worry too much about the exact form of
the interaction curve. The best proposed curves are those of Drucker (1936) for
rectangular sections and Neal (19%la) for I-sections, both for the cantilever with end

force, Drucker suggested the relation

Mo Q_\u
- () (5.1)

as a good approximation for a rectangular section; this interaction curve is shown in
Fig. II 22(a). Since M = QL, where L is the length of the cantilever, and MP/Qp =

h/2 where h is the beam depth, particular beams are indicated by straight lines

Zl x
[}
OlO

©
o

The lines drawn for the two cases L/h = 1 and L/h = 2 in Fig. II 22(a) show that M
falls below Mp by less than two or three per cent if L/h > 2. This means that the
shear effect is entirely negligible for a rectangular beam in static loading, since

a requirement that L/h < 2 makes any treatment as a beam virtually meaningless. How-
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ever, such a couclusion does not necessarily apply to dynamic loading.

For 1 or box-section beams shear effects are larger. Neal (19€la) obtained good

lower bounds (arain considering the cantilever under a static tip leading), his curve
being shown in Figs. IT 22(1h) and I1 22(c¢), together with appropriate straight lines

for particular beam ratios L/hl. Here the length hl was taken as h-t, where t iz the

flange thickness; and Qp is the capacity load of the web area in pure shear. (In view

-

of the approximations involved in using the results, obviously h, may as well be

1
taken as the beam depth h.) Neal's results show that an 1 section or box beam has very
little strength in bending when it carries a shear force greater than the shear capacity
of the web, with a very abrupt drop in moment capacity at this value of shear. In the
static problem shear effects are negligible for L/h greater than about 4; again this
does not necessarily imply the same conclusion for dyramic problems. The conclusion
that the shear capacity of an I section is essentially the shear capacity of the

o
web (Qp = Y Aw) was demonstrated experimertally by Hall and Newmark (1955),

T2

In view of the uncertainties, the simplest form of interaction curve is
likely to be adequate, and this is a simple square diagram as shown in Fig., II 22(d).
Here the coordinates are M/Mp and Q/Qp where Mp and Qp are strengths in pure bending

and pure shear, respectively, Qp is the yield stress in shear ov/? times the effective

cross-section area, which can be taken as the total area for a rectangle and the web

area for an 1 beam. Deformations can be assumed to be governed by the condition of
normality to the yield curve, as indicated by the arrows representing the strain rate
vector with components (Qp;, Mﬁ;) in Fig. II, 22(4d).

Very few dynamic problems have been studied with inclusion of shear deformations
and an interaction between bending and shearing strength. Two solutions have been
given in which shear deformations have been computed on the basis of an interaction

theory. Karunes and Onat (1960) worked out the ca - of a free-free beam initially at
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rest which is struck transversely at its mid-point by a concentrated force which
causes the struck peint to move sith constant velocity V. This problem was studied
by Symonds and Leth (1954 ) ignoring shear deformations. The shear loading is very
severe; if only bending deformations are taken into account the shear

force on each side of the struck section is proportional te YV/t . The treat ..
by Xarunes and Onat therefore starts with pure shear deformation (sliding) of an

element at the struck peint. If the beam is sufficiently short, for a given material

and section shape, only sliding occurs (Fig. II 23(a); this requires
5.
o < (5.2)

When the above conaition is satisfied very large shear deformations can occur with
zero bending, as shown in Fig., 1I 24 by the curve marked 'Shearing Deformatior'.
If the bending strength is reduced, so thatO“L/Mp > 4, then bending dzformations
occur together with shearing; the two ranges of %}/Mp are indicated in Fig. II 23(h)

and (c). The curve labeled "Bending Deformation" in Fig. II 24 shows the final

deformation angle as function onpoHp. The straight line at M ef/le2 = 0.425 is
the result predicted by the analysis neglecting shear deformaticns,
This is a problem in which extremely severe shear loads occur, and in which

the larze shear forces and deformaticns occur al cross-sections where the bendinp

moment is large and bending deformations take place. The curves of Fig. 11 24 show

that the analysis neglecting shearing deformations overestimates the main bending
deformation by an amount less than 20 pear cent ir QpL/M is less than about 10. For
rectangular sections this requires quite short beamsz, since QpL/M = 2L/h; serious
shear effects would require L/h < 5. However, for 1+ or box-section beams &

comparable influence of shear deformation would occur for much larger span-depti




-H5-

0 o,
ratios. For these sections, QpL/Mp is of the order of Ey AHL/§— Ah = AwL/Ahl where

A is the web area, A the total section area. Since Aw/A can be quite small - about
1/4 for an 8WF40 - a minimum L/h of as much as 30 to 40 may be demanded, in order

to keep the influence of shear on bending deformations less than about 20 per cent,

aMMWLMWHdﬂijkfMﬂf”?ftk‘iﬁ;ﬁJ

As mentioned, the case cunsidered by Karunes and Onat is a particularly

RLATRLE 1 R

severe one in regard to shear effects. The problem first treated by Salvadori

i

and Weicdlinger (1957) and later extended by Nonaka and Symonds (1967) is perhaps more
typical of practical cases., Salvadori and Weidlinger considered a simply supported
rigid-perfectly plastic beam subjected to a uniformly distributed loading P = PG e_t/T
and showed that the beam may deform plastically by developing plastic slides at the
supports and a plastic hinge at the mid-span. Here the maximum shear force comes at
sections where the bending moment is zero, and vice versa. The square interaction
curve of Fig. II 22(d) is appropriately used. In the above solutior it is assumed
that the plastic hinge at the midspan does not spread,whereas in the treatment
presented by Nonaka and Symonds this phenomenon is included in the analysis. Alco
comparisons are made between deformations produced by an exponential and a rectangular
load pulse and impulsive loading.

No deformation occurs unless the applied load P is of a sufficient magnitude
to cause the maximum moment Mp to occur at the midspan or the maximum shear feoice
Op at the supports. For a beam stronger in shear, bending takes place at a central
plastic hinge for P > uMp/L; correspondingly, for a beam stronger in bending than shear,
deformation occurs as shear slides at the supports for P > 2Op' The magnitudes

of final deformations are functions of the parameters v = PS/Pb = ODL/QM and u =
1 P o

P /P, = P L/uM where P
o o P

b EQP is the collapse load in shear and P, = uMD/L is the

s b

collapse load in bending.

It develops that motion may start in any of five different modes depending on
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the values of v and M- The mode shapes and the limiting values of v and v, er each
particular mode are illustrated in Fig. IT 75. It is noted that for v < 1 yielding in
shear only takes place and the maximum bending moment in the beam does not reach MP,
regardless of the magnitude of the load. However, for v > 1 mixed modes of shear slides
and a central hinge or plastic zone may occur depending on the values of v and M As
the value of Y tends to infinity, i.e. impuisive loading, shear motion always occurs.
Types (E) and (3) motions were not considered by Salvadori and Weidlinger. The latter
type of motion and type (A) motion, i.e. pure bending only, have been analyz~d in detail
by Symonds (1954).

In Fig. II, 26 are shown curves of final mid-point deflection relative to the
support points for three different load j;ulse shapes, and with v as parameter. In all
cases the total impulse is the same. We see that in the case of the rectangular puise,
for u, greater than 10, the mid-point deflection is practically independent of uo and
takes approximately 90 per cent of its limiting value of impulsive loading. For a
corresponding exponential pulse load, i.e. with the same impulse and peak load, smal.ier
deformations are produced and this is explained by the fact that deformation is complete
before the end of the exponential pulse while for the rectangular pulse the whole impulse
affects the deformation. This difference becomes more significant for small values of
u,. Tor a given pulse shape, a single curve of HnGF/fﬂ arainst v anplies
for all v > 1.5. It is noted also from Fig.1I 26 that for certain values of
v < 1 the deformation caused by shear motion alone exceeds that of the other types of
motion, This fact is better illustrated by plotting deformation values against V with
u, as parameter as in Fig.II 27. We see that for any particular load, deformation
is a minimum at v = 1.0, greatest for v < 0.75 approximately, and constani for

v > 1.5, The deformation modes are lettered and indicated by the dotted lines in

Fig. 11 27 Figs. II 25 and II 27 are reproduced from Nonaka and Symonds (1967).
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It has been mentioned that Salvadori and Weidlinger considered
Type (D) motion only. A qualitative difference appears when this assumption
of a single bending hinge at the center is made, instead of considering finite
he center. Instead of there being one deformation-load curve
tor all v > 1.5 (for giver pulse shape), as found in the complete solution, when
the single-hinge approximation is made different curves are obtained for dif-
ferent values of v, when Mo exceeds a certain magnitude. In Fig. 1I 26 the
"single hinge" curves are drawn for the limiting case v = =, for the two pulse
shapes considered. It is seen that the guantitive error of the single hinge
approximation is small.

To sum up, whether or not shear deformations are important depends
mainly on the magnitude of v = QpL/2Hp. If v »1.5, the presence of shear
deformations has a negligible effect on the major deflections. For a range
of v between aktout 0.8 and 1.5 the shear deformation results in smaller deflec-
tions, tut for v smaller than alout 0.8, the deflections are larger than precicted

—————

by the theory for bending deformation only (shear strensth taken as infinite).
. N
For a rectangular or other compact section v = L/h and shear deforma-
tions are unimportant. For box and 1 sections, however, v it smaller; for ex-

ample,v = L/7h for an 8 WF 40 secticn. For such sections, shear deformations can

be important i1f the span is less than about 10 times the depth.

(B) Moment-Axial Fecrce Interaction

The above discussion considered situations where shear forces were
large but axial forces N were zero or at least very small. l!lowever, in practical
precblems of dynamic loading causing large deformations, axial forces must often
be considered; they may piay the principal roie in determining the locad-deformation
characteristic of the structure. Consider a heam whose ends are fully constrained
and which is subjected to a trangverse pressure of high initial intensity. Neglect-
ing effects of shearing deformaticn, suppose the loading can be approximated as of

impulsive type,
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the pressure imparts an initial velocity V to the whole beam. The initial response of

LV

the beam is one of elastic bending,but if V is sufficiently large, plastic deformations

much larger than those in the elastic range will be produced. This problem was analyzed

by Symonds and Mentel (19%8). Assuming a rectangular cross-section the interaction

between bending moment M and axial force N was taken as follows:

2
J.H'ii_,.l.=1 (5.3)

2
N
P
Deformations generally are a combination of axial extension e, at the centroid of the

cross-section and curvature x of the center line. The rates éo‘ ¥ (or increments) of

these quantities are related by

=
™

§~ (5.u4)

= |

With these relations, the rigid-plastic analysis can be carried out without difficulty

for the transition phase of the motion in which the initial bending response is replaced

by one in which both bending and axial extension occur, This analysis shows that when

the central deflection reaches a magnitude roughly equal to the depth h of the beam,

: 1}

the axial ferce becomes egual to Hp

deflections the beam behaves like a plastic string or membrane, carrying axial force

nd the bLending moment vanishes. For further

Np without bending. The analysis of this phase of the response is complicated by the
need to satisfy the flow relation ( 5.4), When N/Np =1, éo and kK must satisfy the

inequalities

M &
-1/2 < ﬁE{_-i 1/2 (5.5)
po .

Symonds and Mentel ignored this restriction resulting from the finite bending
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strength of the section: the beam is treated in the second phase like a plastic string
until the maximum deflection is reached, which is taken as the final deflection,

Deflections obtained in this way are bounded above by the deflection calculated assum-

ing plastic string behavior during the entire motion, rather than just the final

i o i

stage. They are bounded below by results of an analysis continuing {(beyond its
proper range) the treatment for beam response with bending moment-axial force inter-
action, The curves shown in Fig. 1T 28 show the final deflection according to the
complete (approximate) solution of reference, together with the upper and lower bound
=olutions just menticned, and the simplest rigid-plastic solution in which axial
constraints are disregarded, These are for the case L/h = 20, It is seen that for a
beam as slender as this, the behavior resembles that of a string much more than that
of an unconstrained beam, Thus the end constraints against axial displacements have a
profound influence on the deformation.

The beam problem dirscussed above required consideration of axial forces as
a consequence of the growth of deflections to magnitudes as large or larger than the
beam depth. In other structures, such as arches, rings, and frames, axial forces are
required for equilibrium of the undeformed structure, and the interaction between
bending moment and axial force, and the relation between the corresponding deformation

r ates must be taken intc account from the start,

In the foregoing discussion of interactions cf bending moment, shear, and
axial force in beams we have considered separately interactions between M and Q, and
between M and N, This has been expedient in order to estimate orders of magnitudes
of effects, and in view of the absence of true (local) interaction relations. liow-
ever, it is worth menticning that the problem of plastic interaction between the
three quantities M/MP, Q/Qp, N/Np has been solved for the static loading of a

cantilever by an end force. As noted, the results certainly do not apply quantita-
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tively even to other cases of static loading, but may give qualitative indications of
the importance of the interactions. The full interaction problem for a beam of
rectangular section was solved by Neal (1961b). Previously it had been shown
(Drucker (1956)) that a good approximate interaction relation between M and Q is

equation (5.1}

—_

"
M
P

+

e fr
n
[

Neal's results showed that an equally good approximate formula could be used when

N/Np is also taken intc account, namely by replacing in the above equation

" o1 0w’
N2
p
2 2
95 by g'2"‘1“"2'
0 Q N
p pl-=
N
p
The suggested formula is
4
L - 1 - +Q—-—__—___._l =) (5.6)
M N? QU N? 5
Py p (1 - -—->
2 3
N N”
P P

Some of the interaction curves for constant N/Np are shown in Fig. II 22(a).
For I-sections ne such simple approximate formula can be glven but Neal
succeeded in olLtaining lower bound curves. These are presented in the form of the

surface drawn in isometric projection in Fig. II 29, The results are for an 8WFuD

section.
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Figure Captions for Chapter II

CaEtion

Problem solved as example of dynamic elastic-plastic
analysis by normal modes: uniform simply-supported beam
with initial velocity varying as half sine wave,

Idealized elastic-perfectly plastic moment-curvature
relation used in illustrative problem.

Deflection pattern with plastic hinge at midpoint.

Slope angle at midpoint as function of dimensionless time
n' and § = ratio of initial kinetic energy to maximum
elastic strain energy capacity of beam. HNormal mode
solution is valid up to point of first maximum, (From
Seiler, Cotter, and Symonds, 1956)

Plots of bending moment over half-span at twoc times n'
and four magnitudes of energy ratio S. (From Seiler,
Cotter, and Symonds, 1956)

Terminology for finite-difference treatment of Baron, Bleich
and Weidlinper (1961).

Simple spring-mass model. P(t) is external lcad.
Rectangular load pulse of intensity Po’ duration Tt.

Assumed linear elastic-perfectly plastic "spring characteris-

tic": Q = "yield load" or "static collapse load", x =
"yield d¥flection". y

Relation between time of yield t and load ratio u = P_/Q
when yield occurs during load dufation interval (tv < DY

Ddependence of final plastic deformation on load ratio

w = P_/Q, calculated by elastic-plastic analysis (x_) and
rigid:plgstic analysis (x '), for several ratios of load
duration t to elastic period T.

Error of rigid-plastic analysis as function of enerpv
ratio R' = nyp'/¥0yxy, for various load duration ratios 1/T.

Error of ripid-plastic analysis as function of load duration
ratio /T, for various load magnitude ratios u = POIOV.

Illustrative problem for deflection estimate: simply-supported
beam with uniformly distributed locad P,

Deflection confipuration, illustrative problem for deflection
estimate.

Mass-spring model with two deprees of freedom, example (A),
Load of impulsive type is applied to one mass giving initial
velocity Vo.
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Final plastic deflections of two-depree-of-freedom model,

example (A),

Sequence of elastic and plastic deformations in example (A
At a given value of energy ratio R (or of n) the curves show
times when plastic deformations start and ston in the two

springs,

h
I

Illustrative problem of uniform pressure on simply supported
beam, example (B); elastic-plastic solutions from Baron,
Bleich, and Weidlinger (1961); ripid-plastic solution from
Symonds (1954),

Illustrative problem of cantilever beam subjected to impact
at its base, example (C). Elastic-plastic numerical solu-~
tion from Alverson (19%8); rigid-plastic solution from Green
(1954}, (a) shows final angle of rotation at base as func-
tion of dimensionless acceleration parameter. (b) shows
notation and locations of typical "+" and "-" plastic defor-
mation.

Patterns of plastic deformation of cantilever with base
impact, example (C) from Alverson (1958), symbols "+" and

"=" refer to concave downward and concave upward curvatures,
respectively, as in Fip. II 20 (b). Vertical line indicates
occurrence of plastic flow at the corresponding cross section.
Solution was obtained by numerical intepration of finite dif-

terence equations based on grid of characteristics, with 20
sepgments along beam,

Interaction diagrams: solutions from limit analysis for

bending moment M, shear force Q, and normal force N at base of
are limit (fully plastic)

an end-leoaded cantilever,
magnitudes for correspondlnp 1ndgv1dﬁal load.

(a) FRectanpular section, Full curve for N = 0 from Drucker
(1956); dashed curves for N > 0 from Neal (1961b).

(b} and (c} Curves for typical I-section (EWFU0}, Sharp
drop in M occurs at Q = Q, = approximately web area
times vield stress in shear. (From Neal (1961a),

(d) simplified interaction diapram assumed tor use in dynamic

problens. TFor I-section Op is taken as Qw, as indicated
for (b). '

Problem of shear deformation of free-free beam treated by
Karunes and Onat (1960).

Curves showing shear and bending deformations, adapted from
Karunes and Onat (1960).

Types of initial deformation of simply supported beam under
uniformly distributed load with initial magnitude P, = P(0),
showing dependence on parameters of load magnitude MO and of
shear strength v. (From Nonaka and Symonds, 1967)
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Comparison of final midpoint deflection as function of
load mapgnitude at constant impulse I for rectanpular pulse,
exponentially decreasing pulse, and impulsive load (initial
velocity). Solution for "sinple hinge bendinp only" for
a .23
€iud
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Dependence of final midpoint deflection at constant impulse
on shear strength parameter v, for various load magnitudes,
Dashed lines separate repions of initial deformation pattern
as shown in Fig. II 25. (From Nonaka and Symonds, 1967).

Deflection curves showing large inrluence of constraints
against axial motion, from Symonds and Mentel {(1958).

Approximate interaction between bending moment M, shearing
force Q and axial fcrce N for an J-section, pleotted in an
isometric diagram, from B. G. Neal, Report NNS/12, October,
1961, Brown University to Norfolk Naval Shipyard, Underwater
Explosions Research Division,
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Chapter 111 ?
EXPERIMENTS ON BEAMS -

Intreoduction

Since the beginnings of the modern interest in plastic deformation of
structure- under dynamic load, remarkably few experimental investigations on
beams have been carried out. This i1s surprising, since a beam is a simple but
in many ways highly representative structural element. Considerable test work
has been dcne on more complex structures (protective structures, naval and
space vessels, etc.) as an aid in dgsign, but much of this has been done on
a:. ad hoc basis without time to explore detailed relations between theory and
test results. On the other hand, engineering scientists involved in basic
yes€-rch have devoted a large amount of effort to investigations, both
theoretical and experimental, of longitudinal plastic wave propagation in rods.
This is natural, since the theory of uniaxial stress waves is highly developed;
if transverse inertia is neglected and an invariant stress-strain relation is
employed, an exact elastic-plastic solution is obtainable in principle for
arbitrary initial and end conditions, and for arbitrarily large strains,
Similarly, @ large amount of work has been done on plane waves, i.e. waves
of uniaxial strain, in media with large dimensions transverse to the direction
of propagation. Analyses based on invariant stress-strain relations are
obviously suspect, in view of the rate dependence cbserved in many experiments
as summarized in Chapter I. Wave experimeuts have unfortunately not y.t been
successful in resolving questions of dynamic stress-strain relations. There
are basic disagreements about the wave tests and their interpretation; see

for example Karnes and Ripperger (196%), Bell (1966), and kolsky (1966),

[PPSR
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The number of experimental investigations published on plastic

deformations of beams under impaci, blast, or other dynamic loads is a small

fraction of the number published on longitudinal waves., The experiments on

beams do show a certz’n degree of consistency in the general conclusions

drawn from them. The summary below will try te point out these points of
general agreement, but will also indlcate the areas where experimental work
has been neglected or is inconclusive.

The principal experimental investigations, which will be studied

Lon fomy GNB O B

in what follows, are summarized in Table III 1.

ey

We will not describe in detail the experimental investigations

JTE WL T P SPPIUTING, - LT

listed in Table IIT 1, but instead will attempt first to summarize the main
1

results, show comparisons with various theoretical predictions, and then give

gt

4

scme overall conclusions. The list of investigations is certainly not an
exhagustive one, and a few other experimental studies on beams will be
mentionec below at appropriate places, The n>st valuable investigations

arc those in which important parameters were varied through wide range.

[P T . I ]

ests of Duwez  Clark and Bornenblust (1250)

This investigation was concerned with impact of a mass on a long
beam, the problem being that solved by Bohnenblust and discussed in Chaptrer II,
section 2. The autnors compared the deflection curve (obtained by high speed

3

and elastic deformations determimed from it with

(n]

photography) anc the plasti
the corresponding quantities calculated from Bohnenblust's general elastic-
plastic theory and from a purely elastic thecry. Both theories, it should be

remembered, Aapply strictly to infinite beams and to constant velocity impact.

A namank Y Searnil fo—— Sy Boanionll
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Table 11T 1
Type of Main
Investigators Specimens Loading Interest
Type of Suppor
Materials Dimensions

1. Duwez, Clark Ccld-rolled | Simple support | Impact by |Comparison
and Bohnenblust { steel; length 10 ft. heavy with general
(1950), copper. depth 1 in. hammer ; elastic-plastic

width 3/8 in. controlled | theory of in-
contact finite beams.
duration.

2. Parkes Steel, brasd4Cantilevers Impact by |Comparison with
(1955, 1956, duralumin. simple support | hammer or lrigid-plastic

1958). lengths 2 in.- { by lead theory.
12 in. bullet.
depth 1/4 in.
width 1/4 in.

3. Mentel (1958) Steel Cantilevers Impact on {Comparison with
Bodner and Al alloy with tip mass, |base; im- |rigid-plastic
Symonds (1962), |6061-Té6 lengths 2 in.- {pulse at theory.

12 in, tip mass

depth .12 in. from ex-

width .3 in. plosive
charge or
bullet ern-
tering tip
mass.

4. Florence and Steel CR1018|Simple and Sheet Comparison with
Firth (1966) Al alloy fixed-cnded explosive risid-vlastic

2024-Th supports, placed on theorvy.
6061-T6 length 18 in. the surface

depth 1/4 in.
width 1 in.

of the beam

i

o~
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The horizontal beam specimens (10 ft. by 3/8 in. wide by 1 in. deep)
were supported at their ends by pins allowing rotations and horizontal displacements,
and were struck at their center by a vertically moving hammer weighing 5-3/4 1b.
accelerated by rubber bands to the desired velocity of impact (in the range 25 ft.

per sec, to 150 ft. per sec.). The hammer struck a set of anvils a certain

ot e L4 SRl bR e

distance below the top of the beam, and at the instant of striking the anvils

closed a circuit which fired an electric discharge tube and thus photographed a

g ey GN OB B GBS we

white line drawn on the beam. The various desired impact durations were

- controlled by the distance of the anvils below the top of the beam; the anvils

Mot -
e

permitted further downward motion of the specimen beams as a result of their

S inertia., Cold-rolled steel and annealed copper beams were tested. The appropriate
r S

- -

] bending moment-curvature curves were determined by computation from measured

F -

L3 stress-strain curves for tension and compression.

I

g

For the cold-rolled steel beams the bending moment increases slowly

l.....u-i

with curvature beyond the plastic range and the curve is quite well approximated

by an elastic line and a horizontal plastic line. The derived curve for the test

specimens and the bilinear approximate curve are shown in Fig. III 1 (b). The
plastic moment is taken as 8000 in.-1b. in the calculations. TFig. III 1 shows
. a summary of typical results for cold-rolled steel specimens. Fig, III 1 (a)

shows a typical deflection curve together with calculated deflection curves based

(3

on Bohnenblust's elastic-plastic analysis and on the same type of treatment

without consideration of plastic strains. Figs, III 1 (d) and (e) show the results

of a series of tests made with common impact velecity of 100 fps, adjusting the

anvils so as to obtain different impact times. These figures show that the

. angle of deformation @ at the struck point and the point of zero deflection x

o
1/2

. vary with (time) in an approximately linear manner. The numerical agreement

of the 6 values with the theoretical elastic-plastic curve of 6 vs. v/t is gquite

1. mf
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£all helaw

n Fig. II1I 1 (4) by £all belo
the theoretical curve at larger values of Yt. As far as the zero-deflection
point L5 is concerned, the results are completely anomalous. Im Fig. III 1 (e)
the test points are shown by circles, and the X, - Yt curves predicted by
various theories are drawn, the solid line being the curve predicted by
Bohnenblust's elastic-plastic theory. The broken lines, as marked, are for the
elastic beam corresponding to Bohnenblust's theory, and the most elementary
rigid-plastic theory (discussed more fully below), both assuming that the
striking mass maintains constant velocity. These two curves almost coincide,
and they show much better agreement with the test results than does the curve
deduced from the elastic-plastic treatment, which should be the most realistic
theory. The agreement with respect toc the zero deflection point between the
rigid-plastic and wholly elastic theories suggests that the agreement of either
of these with test results is fortuitous, and gives no indication as to the
reliability of either thecry in other situations.
The angle of rotation 6 at the struck point is shown in Fig. III 1
(c) as a function of striker velocity V;, the test points again shown by
circles and results predicted by Bohnenblust's elastic-plastic theory by
the solid curve, Evidently Pchnenblust's theory predicts the plastic deformation
angles well at the smaller striker velocities, but overestimates the plastic
deformation by roughly 35 percent at the highest velocity (150 ft. per. sec.)
| In sum, the tests by Duwez, Clark and Bohnenblust (1950) show that
for cold-rolled steel beams
(a) Bohnenblust's elastic-plastic theory predicts the plastic
deformation angles, as function of impact velocity at constant
impact duration time, with good accuracy over the lower part

of the velocity raage, but overestimates this quantity at the

highest velocity by about 35 percent.

b




T TR e -

1

P—,
by

76

st
<~

(b) Bohnenblust's elastic-plastic theory predicts the ingresse of

e e mnd

angle of plastic deformation with time (¢t constant impact

velocity) with good accuracy, although the theory overestimates
this angle at the largest deformation values by about 10 percent.
? (c) The shape of the deflected beam is reasonably well predicted

by Bohnenblust's theory. The spread of deformation as a

——— e

function of time may be studied by examining the coordinate x

1 of the point where the deflection curve crosses the zero-deflection
axis closest to the impact section; the predicted reclation
X, = constant vt agrees well qualitatively with the results

1 observed in the tests.

¥hat conclusions can be drawn from the results summarized above?

"Agreement between theory and tests' should mean that the approxi-

mations and hypotheses on which the theaoretical predictions were based

N
5 are valid- excluding, of course, the possibility that a serjously incorrect
- assumption or approximation was cancelled out by some phenomenon which played
a role in the tests but was omitted from consideration in the theory.
In the present case, the major assumptions and approximations in ;
Bohnenblust's theory of elastic-plastic beam impact are as follows: %
(1) The Bohnenblust form of solution applies only to constant é
velocity impact on a beam of infinite length. B
(2) Rotary inertia and shear deflections (elastic and plastic) %
; are neglected:; in the elastic range the differential equa-
‘ tions are those of the elementary Bernoulli-Euler beam theory.
é (3) The basic material characteristics - ¢ curve relating bending
.- moment to curvature - are invariant properties of the material

and the given beam section; in particular there is no depen-

dence on the current strain rate or on the history of deforma-
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tion rates.

(4) In applying the theory to the test specimens further approxi-
mations regarding material behavior are made, in that the
moment -curvature relation was approximately represented by

two straight lines: plastic behavior was represented in the

case of the cold-rolled steel by a horizontal line (as in

Fig. IIT 1 (b), and in the case of copper by a straight line
at an angle with the strain axis. In both case a Rguschinger
effect was assumed such that a constant elastic range exists
(kinematic strain hardening)

The most important discrepancies between test results and theoretical
predictions are probably those beiween measured and predicted plastic rotation
angles at high impact velocities. The experiments must be examined to try
to determine which of the listed sources of error is responsible for the
observed discrepancies. This implies (in the absence of further experimentation)
the need for reasonable estimates of corrections corresponding to the listed

sources of error.

Rigid-plastic analysis provides a means by which some of these

estimates can be made very easily. Whethe™ or not a rigid-plastic analysis

is appropriate, it seems reasonable to suppose that the qualitative

importance of the correction Gue to plastic shear deformation, for example,

is roughly the same for both the rigid-plastic and elastic-plastic treatments.
We shall illustrate this use of plastic-rigid analysis in the present

problem. We give first the result of the simplest possible model of the
Duwez-Clark-Bohnenblust experiment, This is the case of an infinite beam of
rigid-plastic material, struck a® one section by a mass so large that its
velocity remains unchanged; the beam is supposed to undergoe plastic deformation

in bending only (shear deformations neglected), to have negligible rotary
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inertia, and to exhibit ideally plastic behavior, without strain rate eftects
on strain hardening. The results of this simplest rigid-plastic model are then
compared with those cbtained for models which are made successively more
realistic by taking account of

(A) finite striking mass

(B) shear deformation

(C) strain rate sensitivity
Estimates of other effects such as of rotary inertia of the beam section,
strain hardening, and finite deflections, could also be obtained as modifications
of the elementary rigid-plastic treatment, but the calculations are more
involved and only a few remarks will be made about these,

The rigid-plastic solutions are obtained from the diagrams of

Fig. IITI 3. Sketch (b) of this figure represents the mechanism of deformation

appropriate when the material is perfectly plastic, with a constant plastic
limit moment Mp. As shown in (b) and (d), at the struck pcint there is a
rlastic hinge with moment + Mp {(assumed unaffected by the shkear stress).

In a segment OH of length 2z the bending moment changes from + Mp to -M_.

The shear force vanishes and the bending moment has the constant value -Mp,
at H and at all sections to the right of H. This moment diagram (d) corresponds
to the velocity diagram (c), which shows velocities of beam cross-sections
proportional to distance from point H in the segment OH; this segment must
move as a rigid body since the bending moment has magnitude |M| < Mp inside
OH. To the rwight of H the beam is at rest,

In the '"simplest solution" the impacting mass G is taken to be so

large compared with the mass of the beam which is set in motion that its

velocity remains unchanged at the striking velocity Vo. Neglecting shear
deformations in the beam, the velocity of the beam at the struck cross-section

is likewise constant at Vo. Thus the only unknown quantity of the deforming
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beam is the length z. This can be found by the eguation of censervation

$]
h

moment of momentum about an axis at O:
z

3

2Hpt = xw(z -~ X)) mdx = = mz' w (1.1}

| b

©
where w is the angular velocity of segment OH, and m is the mass per unit
length of the beam. Since in the case of constant velocity impact w = Vo/z,

the result for z is

The plot of z vs.t according to the above equation is shown in Fig. III 1 (e)
for the cold rolled steel specimens tested by Duwez et al at VO = 100 ft/sec.
The agreement with the experimental values of X (the beam coordinate where

the deflection curve crosses the horizontal axis closest to the impact point)

is remarkable but seems of little significance. The angle of deformation at

the impact point is

* mvgz mVZt
8 = wdt = & = 35 (1.2)
o p P

The central angle from Equation(l.2)is shown in Fig. III 2 as curve D, plotting
6 versus Vo for constant impact duration time 1.22 x 10-3 sec., using the data
for the cold-rolled steel beam specimens of Duwez et al (1950)}. The results
from Equation (1.2) agree badly with the measured values in the tests, being

too large by a factor between 2 and 3. This is not surprising; apart from

the corrections to be discussed, we have no reason to expect close agreement
between predictions of a rigid-plastic theory and the test results (the ratio
of plastic work to maximum elastic strain energy is approximately one, for

the data of the test results shown in Fig. III 2). We may, however, now use

the simple rigid-plastic analysis just given as a basis far estimating the

ot bt Lisl 4
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importance of many of the physical assumptions made, and take the

results as indicative of the relative importance of the same effectx in

Bohnenblust's elastic-plastic theory.

(A) Finite mass.

If the striking body has mass G, but is assumed
to have the same velocity V{(t) as the struck section of the beam, the equation

of momentum of momentum Equation(l.l)must be supplemented by that of linear

i N NEE N PR ee

momentuln in order to determine the additional unknown V{t):

GV =GV +mz V
L]

Using V = wz, the following equations are obtained for V, z, and 9

3- mvzz 1+ g»m%
RS b= % Mz 2 (1.4c)

p 1 +-7§)'

The central angle 8 as function of VO according to Equation (1.uc) is plotted

as curve C in Fig. III 2, taking t = 1.22 x lO~3 sec,, and the data for G,

m, etc. as given for the tests on cold rolled steel beams of Duwez et al (1950).

For an initial velocity of 1200 in/sec at t =

1.22 x 107° sec., Equation (1.u4a)
gives the result V/Vo = 0,71.

Thus the reduction of striker velocity is

. . . e . K sy
appreciable even in the first millisecond for a weight SE i5. striking a 10 fxt

long beam of 3/8 in. and depth 1 in., and the angle of deformation is about

two-thirds that which is predicted if the striker is assumed to move with

unchanged velocity,

(B) Shear deformation.

The rigid-plastic analyses outlined above,

as well as Bohnenblust's analysis, took the shear forces in the beam as
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reaction forces (deing no work), and disregarded the fact that the shear force
at the struck sections is infinite initially. This result is due in part to
treating the beam as a one-dimensional continuum without cross-sectional
deformation due to shear or compression, and also in part to assuming that the
struck portion of the beam instantaneously acquires the velocity of the
striker. Since these are common assumptions in conventional beam theory, it
is of interest to obtain the correction for shear deformation alone in the
plastic-rigid theory.

This simple treatment of shear deformation to be outlined takes the
square interaction curve of Fig. II 22 {d) as an adequate zpproximation. At
a cross-section where Q = Qp a shear slide is permitted, (corresponding to a
plastic hinge for bending); a jump in transverse velocity of the beam across
the slide section must have a sign agreeing with the shear force directions so
that positive work is done. In the present problem we write the velocity of
the striker as V' while the velocity of each adjacent section is V. During
a period after the mass strikes, the shear force at the struck secticn is Qp
and V' - V > 0. At this section the fully plastic bending moment HP is assumed
to act, without interaction between shear force and bending moment, as in the
case treated by Karunes and Onat (1960) outlined above (see Fig. II 23). The

equation of linear momentum replacing Equation (1.3) is

GVo = GV' + mzV (1.5)

Since the shear force at the struck section now has the known value Qp the

linear impulse-momentum equation for the half-beam is

t =
QP

N | =

mVz (1.6)

The previously written equation of angular impulse-moment of momentum still

applies, and V = wz, so that
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1 2 .
Mt = —~mVz" (1.7)
p 1
Comhining Pquatiens (1.6}, (1,7), and (1.5) we obtain
€M
z = 6..2_ (l.ed)
p
2 .
ESB. 82_ )
;- t =V - + ~— t (1.8b
¥ v o ( G 3mM )
n
3
v 0t
w=-= L (1.8¢)
Z  18mM
P
Note that the hinge coordinate z is constant in this phase. The shearing
deformation is completed in a time t, determined from Equation (1.8b) by
setting V - V' = 0. At later times the momentum conservation equations apply

in their previously used forms, and the deformations are easily found by
integrating beyond time t.- The central angle of rotation computed at

t = 1.22 x 10~3 sec, is shown as curve B in Fig. III 2. It is seen that
with account taken of cshearing deformation there is a further reduction of
the central angle below thar of curve C, The original large discrepancy
between the test results and the angles predicted by the simplest rigid-
plastic theory has been largely removed by the analysis taking account of
the finite stiriker mass and shear deformaticns.

{C) Strain rate. Fzra (1958) has given an approximate treatment
of effects of strain rate sensitivity in Duwez, Clark, and Bohnenblust's
tests, We will discuss later in more detail the inclusion of strain rate
sensitivity in impact problems. It will suffice here to say that Ezra's
analysis introduced a corrected dynamic plastic bending moment corresponding
to estimate average strain rates at the plastic hinges at successive stages
of the deformation. The plastic hinges were assumed to be located at the same
cross-sections as predicted by the solution for non-rate sensitive rigid-

plastic material, an’ ' * .ins and strain rates estimated at each hinge by
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assuming the length of the plastic hinge to be equal to the depth of the

l'eam. At each step, having computed the strain rate the plastic hinge

morment was determined so as to agree with the dynamic yield stress values

s st

measured by Manjoine (1944) as a function of strain rate. Using the new value

of hinge moment the rotations and angular velocities across hinges were

R

recomputed. The hinge moments were again revised, and the cycle repeated

until a steady state was reached. It was arbitrarilv assumed that the dynamic
plastic moments were the same at all hinges. The resulting curve calculated

by Ezra in this way is shown as curve (E) in Fig. III 2, Ezra's calculation
takes account of tle change in velocity of the striker lLut not of the shear
deformation, and thus his curve (E) should be compared with curve (B);
presumably the inclusion of shear deformation would result in an additional
reduction of the final deformation angle. Ezra's curve agrees very well with
test points up to about 100 ft per sec, but lies below the test values above
this velocity. Apparently his method over-corrects for strain rate sensitivity
in this range. However, it should be remembered that the validity of
neglecting elastic deformations in this problem is questionable, as already
pointed out, since the amount of plastic work is comparable to that ot the
maximum elastic =tralin energy. M-weova~, .. =train ret- .nusit viry of the
mild steel tested by Manjoinewas probably considerably greater than that of

the cold-rolled steel of the present tests, (See Chapter I, Section 5; some
tests have shown negligible strain rate sensitivity for a cold-rolled steel).

It is remarkable that curves (B) and (E) lie as close as they do to the test
points, but the real interest of the varicus curves in Fig. III 2 is in the
comparison between the curves derived from rigid-plastic theory which enable

one to estimate possible corrections from various sources to the Bohnenblust
treatment. There is no doubt about the need for such corrections: the striking

mass is finite and its velocity must decrease; the shear force cannot attain

T R R
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infinite magnitudes; and mild steel exhibits a considerable increase of yield
Sirengih at the strain rates met with in Duwez, Clark and Bohnenblust's tests.
Whether the corrections for these physical effects obtained by considering
rigid-plastic behavior are quantitatively applicable to the elastic-plastic
treatment is not certain; however there seems no way of modifying Bohnenblust's
analysis so as to obtain them.

In beam impact experiments in which final deflections considerably
larger than the beam depth are produced, with ends constrained against axial
motion, account must be taken of axial forces, as was pointed out, Experiments
designed specifically to investigate this effect in combination with rate sen-
sitivity have been carried out by Nonaka (196%). These confirmed the conclusion
reached analytically by Nonaka (and previously by Symonds and Mentel (1958)),
that membrane effects predominate over bending, with deflections a few multiples
of the beam depth.

2. Parkes's experiments.

Parkes's (1955) tests were the first conducted on structures for the
specific purpose of assessing the validity of a rigid-plastic analysis. These
tests were performed on small cantilever beams of mild steel struck near the
tip by falling weights or by rifle bullets. Subsequently results of further
tests were published (Parkes 1956, 1958) in which beams clamped at both ends
were struck by moving masses, the specimens in these tests being steel, brass
and duralumin. The beam ends were constrained so as to prevent rotation but
allow axial motions so as to freely accommodate the transverse deflections.

The basic conditions of thece tests are as listed in Table III 2.

Table III 2

Parkes'sTest Conditions

(A) Cantilever beam specimens

Lengths: 2 in, & in, 8 in, 12 in.
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Cross-section: 1/u4 in square (nominal)
Striker masses and velcocities:

Heavy 1 1b at 12.7 ft/sec and 18.0 ft/sec
strikers 4 lb at 6.4 ft/sec and 9.0 ft/sec

Light .00u3 1b at 970 ft/sec
strikers .0050 1b at 1580 ft/sec

Beam material; mild steel
static plastic moment 195 1b-in

(B) Fixed-end becam specimens

Lengths: L2 = 2 in, Ll = 2 in, 4 in, 10 in.
L2 =1 in, Ll =1 in, 2 in, 5 in.
L2 = 6 in, Ll = 6 in.

Cross-section: 1/% in square (nominal)
Striker masses and velocities:

Heavy 4 1b at 19.4 ft/sec
strikers 16 1b at 9.7 ft/sec

Light .0050 1b at 1500 ft/sec
strikers

Beam materials and static plastic moments:
mild steel and brass: both 228 1lb-in;
duralumin: 256 1lb-in.

The main objective of Parkes's tests was to fip? whether a rigid
perfectly plastic analysis assuming a constant plastic moment could accurately
predict final deformations, the appropriate dynamic value of the plastic
moment being computed from estimates of average strain rates in the tests
and published data concerning the dependence of yield stress on strain rate.
The main conclusion reached was that such an analysis predicted shapes and
magnitudes with good accuracy in the cases of beams struck by large masses,
but gave poor predictions in the case of low mass—high velocity impact.

(A) Cantilever: The analysis for the rigid-perfectly plastic %
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cantilever is very simple, and follows directly from the pattern of deformation
discussed above for the infinite beam struck by a mass, Let us assume, as
Parkes did, that the striker with velocity Vo transverse to the beam becomes
instantaneously attached to the beam at t = 0, has mass G and negligible

centroidal moment of inertia, Shear deformations, strain rate sensiti-ity,

[ |
and strain hardening, will all be neglected, for the present, although as
will be seen some of these may be important in some cases. The plastic
moment MP is taken as a constant property of the section. Consider the cantilever
beam case, Fig. I1I1 5. There are two phases of deformation. In the first
phase there is a segment of length z(t) in motion as a rigid bedy with
angular velocity w(z) = V/z., Ahead of the deforming segment the beam is at
rest but has constant bending moment -Mp and zero shear force. Plastic
deformation at an arbitrary cross-section at a distance x from the struck
cnd occurs when z = x, i.e. when the hinge point passes through the section
at x, The resilting curvature is x(x) = w(x)/2(x).
Let 6(x3;z) denote the angle of rotation at a typical cross-section
at distance x from the tip, when the hinge section is at distance z from
the tip. Al]l distances may be measured along the center line of the
deflected beam. The rotation angle at the tip is 6(0;z) and the relative
rotation between the tip and the section at x is 6(0;z) - 6(x;z). :
Under the assumptions stated, the work-energy balance is expressed
by

cvz = M 8(032) + K(z) (2.1)

-

where K(z) is the kinetic energy of the beam when the hinge is at z,

cv? + L mzv? (2.2)

K(z) = &

K| =
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For a beam of lengrh L, further jotation 9L a5 & rigid bLoudy occurs after the
hinge sectinn has reached the base. From the work-energy balance in thig

Second phase we havt.
6 = L) = - GV - M 6(0 L) (2-3)
M K( 1

The final angle of rotation at any section is therefore, since 0(x,L) =

6(0,L) ~ 8(0,x)

Gf(x) = 6(x3L) + GL =5 - 8(0,x) (2.4)
P
In particular,
. 1 2
= = 2.5
vf(O) 5 GVO ( )

This result for the final rotation angle at the beam tip is valid for
deflections of arbitrary magnitude, for a rigid-perfectly plastic material.

Although the final angle at the beam tip can be obtained for these
conditions by energy considerations alone, the angle at a generic cross-
section can only be found by the use also of equations of momentum
conservation. To obtain a simple solution we shall assume first that
deflections are small, and obtain the solution (derived somewhat differently)
by Parkes (1955). TFor small deflections, conservation of linear and

angular momentum leads to the equations for the first prhase:
1
GV = GV ¢ 5 mzV (2.6)

1
gmz V= pr (2.7)

The tip velocity V ang hinge position z are therefore determined by the

equations
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- ;37 D (2.8a)

.

El =1 - EZ' If the tip mass is much larger than the beam mass most of the
plastic work is done in the second phase, i.e. in the base hinge rotation.
For example if G > 3mL, more than 80 percent of the initial energy goes into
the base hinge rotation.

In the first phase the curvature may be determined as « = /2 =
de(03z)/dz, using Equations (2.1) and (2.2). An element at any fixed section

x acquires its curvature instantaneously when the plastic hinge reached it,

Z = x; and this curvature then remains constant. The result is

- Q 1 1
x(x) = T mx)s + —7 (2.11)

26

(1+

The displacement at any instant in the first phase can be derived by virtual

work (or othervise) as
z
y(x3z) = «(s) (s-x)ds (2.12)

%

In particular, when z = L the displacement can be written as

!
2 6M t
z = P (2.8b)
: 1422 ™,
26
The first phase ends at t = t, when z = L, and by Equations (2.2) and (2.6’
the kinetic energy at this instant is
eL GVZ 1+ % 8
E,6 = H 6, = 8, 7 g —m—— (2.10)
2 1 2° £ 2 2M 2 '
7 GV, p (1+R)
where 52 is the plastic work done in the second phase divided by the initial
kinetic energy and B = mL/2G. 1In the first phase the plastic work ratio
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T y{x;L) = 7' TV E T+ BL + E-log 3 (2.13) i
(148) 3
where 7
_ mL X
8‘5’5’ E:L
The total deflection is obtained by adding to y(x,L) the displacement
acquired in the second phase, Since this phase consists of a rotation BL‘

w
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the complete deflection is
y(x) = y(x3L) + (L - x)8, (2.14)

where y(x3;L) is given by Equation (2.13) and OL by Equation (2.10). For
8 + 0 (large tip mass) the ccentribution from y(x;L) vanishes as 8, and the
linear deflection (L - x)eL predominates,

(B) Discussion: Table III 3 gives a summary of Parkes' test
results with cantilever beams (Parkes (19551 and of results obtained from
the rigid-plastic theory summarized above. The deformation measured and
used for comparison was the angle of rotation at the base of the beam. In
all cf the tests there was a ;lasti. hinge regicn at the base, comprising
a localized plastic deformation extending a cistance of the order of one
inch (four times the depth) from the base. Beyond the hinge region the spec-
imens had a fairiy straight seyment, and the rotation angle was presumably
measured just outside the hinge. The tests with 'heavy" strikers (specimens
C.1-C.16 in Table III 3) resulted in specimens that were essentially straight
except for the hinge region at the base. The tesats with "light" strikers
(specimens C.17-C.24) were strongly curved near the tip of the beam.

The experimental values of the rotation angle near the base

are shown in Table III 3, column (13)., These are divided by the angle

predicted by the simple rigid-plastic theory to obtain the ratios listed in

gt B m—— 47
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column (14) and plotted in Fig. III 6(a) for "heavy" strikers and Fig. 1IZ 3 -

6(b) for "light" strikers. It is seen that for both sets of teats the ratio

is substantially below unity. The disagreement between experiment and theory

ranges from about thirty to fifty percent.

To explain the disagreement, Parkes sugpested that the strain rate
sensitivity of the material must be considered, and made a semi-empirical
correction of the plastic moment takipg into account the dependence of the
yield stress of mild steel on the rate of plastic straining. we will present
and discuss this correction shortly. Before doing so we raise the question
of strain hardening, which has also been ignored in the theory. Strains at
the base of the cantilevers were in the range of approximately 1.5 percent to
about 4 percent. (Measurements of strains are not cited in the paper, but
they can be roughly estimated from the rotation angle and the observed length
of the plastic region.) These are strain magnitudes in the region of
appreciable strain hardening of steel. One may naturally ask: why not
attribute the discrepancy between experiment and theory to the neglect of
strain hardening?

An indication that strain hardening is not the source of the
discrepancy is given by the plot of Fig. III 8. These are the results from
the tests C.1-C.l6 using heavy strikers summarized in Table III u, 1In
these tests, for each beam length and striker weight, two velocities were
used. Thus for each value of § there are two test results. In Fig. III 8
the pair of points corresponding to each 8 are joined by a line. The
ordinats is the rotation angle observed in the tests. Now since strain
hardening is neglected in the analysis, the error due to this neglect

should depend on the amount of the straining. If the error is important

it shoull show up in the comparison of test and theoretical results. In

a plot against angle of deformation (or strain) as in Fig. III 8, the




effact of strain hardening should cause the disagreement betwesn test and
lheory to be greatest at the larger deformations. Thus the ratio Bexp/eL
should decrease as GL increas«s, The oppusite effect is observed in Fig. 1II
8; the lines joining the paivs of points with common siant up, rather than
down. This provides a strong indication that strain hardening is not
playing a major role in the discrepancy.

The petter agreement of test results with elementary theory at
the larger strain magnitudes presumably is an ircdication that the naglect of

elastic deformations is more satisfactory, i.e. that the rigid-plastic

analysis is more suitable at the higher velocities than at the lower ones.

The energy ratios 2
1 o ML
R=36,/ =3

are doubled in the tests at the larger strain aand velocity magnitudes. The
actual values are listed on Table III 4. The "improvement" due to doubling
R seems to depencd upon R in the way that would be expected if the importance
of elastic vibrations is being diminished; if R is smaller than & the
improvement is 10 to 20 percent, while if R is 9, the improvement is less
than experimental error. This provides some indication of the minimum

value of R desirable for a rigid-plastic analysis: in this example it
appears to be roughly R > 6, but this is clearly speculative, because
effects other than elastic deformations may be playing a part.

The plastic behavior of mild steel is known to be sensitive to
rate of straining, the yield stress being particularly dependent on strain
rate. Parkes made use o’ the data on this dependenze published by
Manjoine (1944) to determine a correction factor applicable to his test

results. He aimed at ob*taining a strain rate correction that would

explain Lis experimental results as simply as possible, rather than at
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TABLE III 4

Comparison of experimental results at same 8,

different R (different striker velocity and deformation)

e PR N

B = . 00457 .00915 .0183 LGN
c1-cu e
X = 675 .622 634 635
)
L
R = 9,2 4.6 2.3 1.52
eex
c5-C8 37-2 = .671 .682 .751 740
, L
R = 18,1 9.1 4.5 3.0
"Improvement"
8 €5-C8
EXp _ - -, 004 0.6 _ 12 .10 _
6 ci-cw ! .68 57 - 108 Sy it S i
exp
ca-c12 Pex
Higher 5——2 = .592 .620 .658 .650
Velocity L
Smaller
Mass R = 9.0 4.5 2.2 1.5

c13-C16 Jexp

8 = .610 .651 .720 .705
L
R = 18.1 9.1 4,5 3.0
"Improvement" = K} 5% 9% 1
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his treatment makes drastic assumptions and makes use of results obtained in

- his tests. It leads to & remarkable degree of agreement between test results

and corrected theoretical values.

Parkes used his rigid-plastic analysis to determine the wean angular

. e T AR
.

velocity at the base of the cantilever. This is eL/tfz' where t is the time

f2
of the cecond phase (rigid body rotation) and eL is the rotation at the base,

and the result is

2 2 2
g=GV°l+§ﬁ /GVOL 1+-3-B ‘vlO

_o = - (2.15)
QMP (1 + e)} np T+ R 2L(148)

i The rigid-plastic theory does not furnish strain or strain rate magnitudes, since

it deals with point hinges and instantansous strain changes. Parkes therefore

used the observation that "in all tests the hinge length was of the order of

1 in.", He thus computed the average curvature rate and extreme fibre strain

rate, respectively, as

K =

T_dé_
3 € 2% ° hLITE) (2.26)

Tl

and took h as 1 in. in all cases. The average strain rates in the outer beam
fibres according to the formula (2.16) are shown in Table III 3, column 9, for

the data of Parkes' tests. Parkes then determined "dynamic plastic moment"
magnitudes corresponding to these strain rate values. The data used for this
purpose, as already stated, was that of Manjoine (19us). (This data and comparable
results of other experimenters has been mentioned in Chapter I; see Fig, I 6).
Curves showing Manjoine's results for mild steel az a function of strain rate in
tensile impact are shown in Fig, III 14. The ratio G/o, is plotted in Fig. III 14,
where 9o the static yield stress, is taken as the value of yield stress in

; . . s - -1 ;
i Manjoine's curve at a strain rate of approx:mately 10  gec ~, and is equa) to
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about 30,000 psi. The dynamic piastic moment M is obtained from the dynamic
yield stress by an elementary calculation, assuming the compressive and tensile
behavior to be identical, and that plane sections remain plane. The resulting
curve for M/Mp obtained in this way by Parkes is shown in ¥ig. IIT l4. Taking
tiic appropriate strain rate to be the aversge extrerne-fibre strain rates as
listed in column 9 of Table I1II 3, the Jyrnamic plastic moment ratios are found
to have the values listed ir column 10 of that Table.

Figures III 6 and 1II 7 show the comparison between Farkes' test
results and those of the rigid-plastic theory. The pair of graphs of Fig. III
6 show the angle of rotation near the base divided by that computed from the
simple rigid-plastic theory, Equatior (2.1"), with the plastic moment Hp correspond-
ing to static conditions. The pair of graphs of Fig. IIT 7 show the same ratio
of experimental to calculated angle, but replacing the static plastic moment by
the estimated dynamic value. This amounts to multiplying the values plotfed in
the upper curves (columpn l4 of Table III 3) by the ratio M/Mp of column 10, to
obtain the ratios listed in column 15,

The agreement between test results and rigid-plastic theoretical ones

is clearly much better in the pair of graphs of Fig. III 7 especially for the

heavy strikers. For these the correction factor (1.5 to 1.8) on the static plastic
moment is such that the plotted ratios cluster reasonably well about the line

drawn at the value unity for the light strikers; the agreement is not quite to

good, the strain correction being somewhat too large, so that the plotted ratios

cluster around a line drawn at about 1.15 on the ordinate scale. However the i
agreement is certainly be‘ter than that obtained using the uncorrected afatic | !
plastic moment. Parkes noted that agreement was poor with respect to the |
deformation near the struck puint. The test specimens had a rather Aifferent ;

shape near the struck point than that predicted, and the zone of appreciable
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curvature extended farther from the tip. However Parkes concluded that the
comparison between measured and predicted angles near the root of the beam
showed that a rigid-perfectly plastic analysis can give satisfactory predictions
of deformations away from the point of impact, "provided due allowance is made
for rate of strain effects". In making the correction for the dynamic plastic
moment a result from the experiments was used, but Parkes indicated his belief
that "a sufficiently accurate estimate of rate of strain could be made without
much difficulty", which would suffice for practical purposes because of the
insensitivity of the deformations to changes in the rate of strain.

It should be meptioned here that the computed results shown in
Table III 3 and Figs. III 6 and III 7 were obtained by independent calculations
from the data in Parkes' paper and that of Manjcine. Comparisons in these forms
were not made in Parkes' paper which gives curves showing the theoretically
predicted angle (after making the correction for strain rate influence) as
function of 1/L. 1In the present compu isons we have used the general formula
Equation (2.10) whereas Parkes used the following formula derived from (2.10)
as the limiting case for veiry large B:

2,2
2G Vo
oL T Il (2.17)

This gives a value of GL about fourteen percent tco large, as compared with

the result from the general formula (2,10) for the shortest beams hit by light
strikers, and accounts for some of the difference in appearance of the comparisons
shown in Figs. III 6 and III 7 and in Parkes' paper. Appreciable differences
in the strain rate were found in some cases, but these led to insignificant
differences in the dynamic plastic moment ratio.

It should also be stated here that subsequent tests by Bodner and
Symonds (1962) indicate that Parkes' method of introlucing the strain rate

cerrection is satisfactory for heavy strikers, but leads to gross errors when
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applied to strikers of moderate or small weight compared to the specimen weight.

4

This conclusion was reached as a result of tests using the same basic beam-mass
model, but performed in such a way that the conditions of the analytical model

were approached more closely than in Parkes' experiments using lead bullecs fired

Ll kb

against the specimen tip. Before describing these tests and a theoretical treat-

ment incorporating strain rate .ependence of the plastic moment, we first 4

ey Em BHE R ...

complete our summary of Parkes' tests,

ey

(C) Fixed-ended Beam

. Parkes' analysis and tests with fixed-ended beams were described in
two subsequent papers: the first reporting tests on steel beams (Parkes, 1956),
and the second reporting tests on beams of duralumin and brass (Parkes, 1958).

The elementary rigid-plastic analysis (consideration of bending

without strain hardening or rate sensitivity) can be carried through almost as
easily as for the cantilever beam. The diagrams of Fig. III 3 apply in the first
phase, when there are two hinge points H and H' moving out from the struck pcint
0 as shown in Fig III 9. Regions ahead of the hinge point are at the limit
moment Hp. As indicated in Fig. III 9, the second phase involves one traveling

hinge H' and a fixed hinge at end B. The third phase involves fixed hinges at

4 and B, In the first two phases the motion is defined by two kinematic

quantities, for example the length z and the angular velocity w of the segment

OH'. Thus the motion in these phases can be obtained from equations of conservation
of linear and angular momentum, with appropriate continuity equations. The

third phase has one degree of freedom and the additional displacements are easily

found either by angular momentum or work-energy equations. The momentum

equations will be omitted. Solving them, the velocity V of the striking mass and

hinge position . are given in implicit form by the following equations:
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First Ehase
2
(v -V) 12M mt
_?‘\T“" = —B (2.18a)
G‘
mz? l?Mgi
G ° EW (2.18b)
o
Second Ehase
1 1 lm 2 _
V(G + 5mL, + Zmz + E'f; z") = GV (2.19%a)
mz?V = 12 ¢ (2.19b)
Third phase
M
vev, - T E T ('Il:—+ %—) t (2.20)
G + "3-le + '3—mL2 1 2

where V2 is the velocity at the struck point at the end of the second phase,

From Equation (2.,19a), putting z = Lll Wwe obtain

2
mL2 ) le mL1
G

\2(; + 35 * EE;E) = Vo (2.21)

The integration to obtain final displacements is elementary, but in the case of
the second phase quite lengthy. Complete formilas are given in Parkes' 1958

paper. The final displacement Ye at the struck point is given by the foliowing

formula:
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2M
P =1__[ﬁ +2£(1+a)-?—-—]
y n
e, f T Tuep? B 1+8
o 2 1;
-1 2
¢=tan ~K(3+2r)
: i 4
- K3 [¢ + sin 2¢ + L sin 4¢ + (3= - 3K) cos ¢
R 4 3K -1
¢ctan ~SK
r(l ¢+ % B ¢ % Br)
+ i 1 153 (2.22)
2(14r)(1 + =8 + =Br + =fr’]
3 p) 6
where
mL L
o2 21 2 _ B/2u
B--—G—-, r-r;,and K-m

The three terms correspond in order to the contributions of the three phases.

Parkes conducted experiments on beams of mild steel, duralumin, and
brass, using square specimens of nominal dimensions 1/# in. by 1/4 in. In
the tests the length L2 was held constant at L2 =z 1.0 in. or 2.0 in., and Ll
given values Ll s L2, 2L2, and 5L2. Two series were carried out, using
heavy strikers and small velocities in one, and relatively very light strikers
(bullets) at high velocities in the other. The experiments using bullets
produced highly lccalized deformation near the point orf striking, while those
using heavy weights resulted in deformed shapes very closely linear between
the struck point and the supports.

The experiments with lead bullets as strikers appcar to correspond
poorly to the theoretical model of a Leam with attached mass. The bullet
sprays out and exerts a force rather like that of a jet of fluid, with a
duration of the order of 0.2/12 x 1500 = 10_5 sec. for a lead bullet of
0,005 lb. weight and 1500 ft/sec. velocity. The theoretical rigid-plastic

model predicts a deformation time (considering only the first phase) of about
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10"3 sec. Clearly the experimental situation has little to do with the
problem treated theoretically, of a rigid mass striking and sticking to a
beam. Although the impulse is equal to the momentum of the striking bullet,
the "attached mass" is essentially the mass of the segment of beam struck

by the bullet. Because of these difficulties no further discussion will be
given of the experin.nts with bullet strikers.

The same difficulties pertain to Parkes's experiments with
cantilevers, already described. For these we have ocutlined the test results
and shown Parkes's strain-rate correction (Figs. III 6, 7)., We have noted,
however, that Parkes's results and conclusions for specimens with small tip
mass (large B) differ importantly from those of Bodner and Symonds. The
reasons for these differences will appear when the latter tests are
discussed in detail,

Parkes's solution (2,22) is cumbersome to work with, but
fortunately a much simpler form of solution is available, which has
satisfactory accuracy in the range concerned in the tests using heavy
strikers, This is an approximate solution, but in view of the approx-
imations in any rigid-plastic analysis the further degree of approximation
is acceptable in many cases. The simpler solution is obtained by assuming
that the entire deformation occurs in a single mode of deformation. Such
an approach is suggested by the fact that in the final deformed shape the
beam segments between the ends and the struck point are essentially straight.,
A 'mode approximation” solution is obtained by assuming that all motion occurs
in a deformation having this shape, as indicated in Fig. III 10, so that
motion with one degree of freedom is considered and a single quantity such as
the deflection y* of the struck point of the angle of rotation 6* defines the
motion. The equation of motion in this pattern can be found, for example

by virtual work, taking the external forces as zero in the present problem of




101

impulsive loading:

1

. 1 1
-~V _— = — —
V& (G + 3 mL) 2Hp(L + T )

1 2

where V& = y* is the velocity of the mass at any time t, in the assumed

(2.23)

mode shape with plastic hinges at the two ends and at the struck point. The

above is readily integrated to obtain the velocity and displacement at any

time, assuming the initial displacement is zero and the initial velocity V;

in the assumed mode shape is known. To find Vg, suppose that in a small

initial period t there are surface pressures p(x) per unit length applied to

the beam and a force P applied to the mass G, These are taken to correspond

to the actual initial velocities, specified in the problem:

T 1

1im | pdt = mv_(x); lim Pdt = GV,
0 ° © ™

The integral of (2.23) in the interval 0 < t < 1 is

t L, t
-G+ Dy | veae + | Par + 1| x ax. | p(x )at
3 Ll 171 1
Q (o] o] o]
L
1 1 1l .t
+ — X, dx p(x,)dt = 28 (/— ¢+ =)
L2 . 272 . 2 P Ll L2

Hence, setting t = 1 and considering 1 very small, we have after using
Equation (2.24), and taking the initial velocity vo(x) = 0 in the present

problem, we obtain

Gv

w10

mL

It may be noted in passing that the procedure used above may be

(2.2u)

(2.25)

(2.26)
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I derived from a different viewpoint, according te which for any chosen mode

- shape the "best" initial velocity is that which minimizes the kinetic energy
,E of the structure corresponding to the difference in velocity between the
. assumed mode shape and the actual prescribed 'nitial velocity. The general
E philosophy of "mode solution" approximations has been discussed with several ex-
: amples by Martin and Symonds (1966). 1In general it gives excellent results by
i Vo 2M Lt
yi - - (2.27a)
mL mL :
! 1+ 3G GLlLQ(l + SE)

comparison with complete rigid-plastic solutions for problems in which one
pattern of deformations predominates, but even when this is not the case it
rmay give results of practical value. Moreover it lends itself to including

effects cf strain rate sensitivity and work hardening (Symonds, 1965). The

} main advantage is the simplicity of method and calculations, as compared
either with the elementary rigid-plastic theory, or with one taking account of

g strain rate, strain hardening, or other complicating effects.

Using the result (2.26) for the initial velocity, the solution of

the present problem is immediately obtained by integration as follows:

3 (2.27b)

R (2.27¢)

To illustrate the accuracy possible from the simple solution, we give
T below the results for the final displacement yg from (2.27b) and those from
Parkes' solution (2.22) for two cases used in Parkes' tests. The following

R &

data relate to tests on mild steel beams with heavy strikers:

| O]
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Farkes's solution y. Mode Approx. y?
Lquatien (2.22) Equation (2.27»)
Fipst Second Third Total
phase phase phase
gG = 16 1b
0.00039 0.0090 0,495 0.u4lu 0.u08
V = 6,7 ft/sec
o
g6 = 4 1b
- 0.00156 0.3u2 0.374 0.408 0.u05
Vo = 19.4 ft/sec

The curves plotted in Fig., III 11(a-d) are from calculations using
Equation (2.27b). Parkes did not give results computed from his rigid-plastic
solution before applying his correction for strain rate sensitivity, but
judging from the example above, the curves derived from the mode approximation

solution are very close to those from the full solution,

(D) Discussion: Table III S summarizes the test and analytical
results., In Fig. III 11 (a)-(d), the test results and calculated deflections
from Equations (2,27)are shown graphically in dimensional form. The deflection
at the struck point is plotted as a function of the ratio r = Ll/LQ’ the
length L2 being constant in each test series at either 1 in. or 2 in. The
deflection according to the elementary rigid-plastic theory exceeds the measured
deflection by a factor of approximately 1.8 in the case of mild steel, of
approximately 1.3 in the case of brass, and of about 1.25 in that of duralumin.
Fig. III 12 shows plots of the ratio of the test deflections to thase of the
simple theory, the over-estimates of the theory being indicated by the fact that

the ratios of experimental to predicted values lie in the ranges 0,44 to 0.62 for
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steel, 0.75 to 0.71 for brass, and 0.82 to 0.77 for duralumin.

d
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The discrepancies b eory and expeériment shown in Figs. III 11
and III 12 were attributed by Parkes to strain rate sensitivity, as in the
cantilever beam tests of mild steel already discussed. It is not possible to

examine these data as done in Fig, III 8 for the cantiiever tests, to indicate

for or against strain hardening as an alternative explanation of the discrepancies,

The tests on fixed-ended beams were not performed in pairs as was done for the
cantilever beam tests, with change of only the striking velocity and hence of
the deformation magnitude.

The tests on mild steel beams (unfortunately not those on brass and
duralumin specimens) were, however, made in pairs, such that in each pair of
tests the incident energy %-GVE was constant. The velocity was changed from
9.7 ft/sec to 19.4 ft/sec and the striking mass from 16 1b to 4 1lb in each
pair. The results for the ratio of measured test deflection to that calculated
from elementary theory are shown ipn Fig. III 13, plotting against test velocity
Vo. In the figure the relevant values of the energy ratio R are given, R being

the ratio of incident energy to the maximum elastic strain energy

2,2 P
GV M°L GV
=9 F o _O (2EI, -
R = BET mp (MPL,. (2.28)

Clearly the value of R is the same for each pair of tests.

The summary of results shown in Fig, III 13 provides some slight
evidence that the discrepancy.between the estimated deflection from elementary
rigid-plastic theory is due to strain rate sensitivity, since there is a
consistent decrease of the ratio (yf)exp/yg as the velocity increases. This

would correspond to an increase in plastic moment at higher strain rates. There

is alsc a consistent reduction in the degree of dependence on velocity as the
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energy ratio R is increased, so that when R is about 10 there is a rather strong
dependence on velocity. while at R = §7 the change with velccity is neglizible.
There is also a quite consistent decrease of (yf)exp/y¥ as R increases. Both
these apparent dependences on R are coincidental; as R increases so does the strain
rate, which seems to play the leading role. This will next be examined,

B Parkes attributed the discrepancy between test deflections and
elementary rigid-plastic theory wholly to the increases of yield stress with strain
rate, just as in the cantilever beam tests on mild steel. He showed that
remarkable agreement between measured and calculated deflection could again
be achieved by the simple correction method already described for his cantilever
beam tests, i.e. by replacing the static plastic moment Mp by a dynamic value
M, the ratio H/Mp as a function of strain rate being derived from test results
for the ratio c/oo of dynamic yield stress to static yield stress as a function
of strain rate. The dynamic tension test results for mild steel, already cited,
of Manjoine (1943) were used for the present mild steel tests (see Fig. III 1lu),
No data exist for duralumin and brass as complete as a Manjoine's for steel.
Parkes constructed a curve for duralumin from test data of Klinger (1950) for
the range of strain rate 0,01 to 1 sec 'l, of Evans (1942) for the rarge .0l to

10 sec—i, and of ¥niffin (1948) for a strain rate of about 15.000 sec_l, The

curve shown in Figure III 15 is the one given by Parkes for the dynamic bending
moment ratio of duralumin. For brass there is even less information, but Parkes
nevertheless drew the curve shown in Figure III 15, which is based on results of
Jones and Moore (1540) for the strain rate range 0.1 to 10 sec-l, which "suggest
that the strain rate sensitivity of brass is about half that of steel,"

The curves of Fig. III 15 are essentially guesswork, Moreover, their
applicability to the analysis of Parkes' data is obviously questionable; the

variability of strain rate sensiftivity with constiturion and condition of the metal
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is well known (see Chapter I), Neverthel=ss, the use of such curves to estimate

s of interest, if only to show the

oo

the correction due to strain rate sensitivity
order of magnitude of strain rate sensitivity required to accoun: for the discrepancy

betuween test results and elementary theory.

As for the cantilever tests, Parkes' strain rate correction for the
fixed-ended beams was made by estimating the strain rate in each test, and obtain-

ing the ratio of dynamic to static plastic moment from the appropriate curve of

s FOREFLAR L ) ving

Figures I1I 14, IXI 15. In order to estimate strain rate from velccities, the

~uy N R R R e eee

. 1. .
average hinge length was assumed known, This was stated as “about 7 in. in all

?) tests"”. Since the bean depth h was é in. in all tests, the ratio z/h of average
[ hinge length to beam depth was thus taken as 2. Strain rates may be estimated

-

} from the pattern of velocities it the mechanism of Figure III 10 as follows,

Consider the angular velocity across the hinge at the struck point to be Wy o+ W,

The rate of curvature here is (wl + wz)/z, and the rate of strain is h(ml + w2)/2z.

e AN ISP

The average rate of strain during the deformation can be estimated as half the

initial value. By writing w = Vo/Ll’ w, * VO/LQ, the result cbtained for the

Lo G Kand

average strain rate is

T, hV° (l_. . }_J ) hVo L hVo 1+ ‘ (2.29)
T uz LT 4= . <
bz Ll L2 Lz 1!_2 yz rL2

P— Roind

This is taken as an adequate estimate of the average strain rate in all three

3 hinges. (It is the exact formula for the mean strain rate in the three hinges

. if the hinge lengths at the end sections are both assumed to be z/2.) The strain
.3 rates listed in Column 11 in Table III S are those computed by the ahove Column 12
} of the same table were obtained by use of the curves in Figures III 14 and III i5.
* The strain-rate corrected deflection, and watio of deflection measured

3 in the tests to the corrected magnitude are shown in Columns 13 and 14 of Table

are

III 5. The corrected deflection curves as function of the length ratio Ll/L2

& xi f et [ e sl . codmacmwsssotnooy. oo S Sicg e - el e ogredmee o
ek MR L T b e s sivtsos bM< b o duirdduobio 7 ¢4 " pim = b
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plotted as dashed lines in Figs. III 11 (a)-(d). The ratio of test deflection
to the strain-rate corrected rigid-plastic deflection is shown in Fig. III 16,

Agreement is seen to be very good. Considering the uncertainty of

information about the strain rate sensitivity of the materials--brass and duralumin,

in particular--the agreement is remarkable. Whether or not the agreement is

significant is much less clear,.

The good agreement in any such comparison could obviously be accidental.
The elementary rigid-plastic solution (without rate effect) could be badly in
error, and the strain rate correction--obviocusly approximate in any case--might
also be erronecusx, but by accident happen to just balance the other errors.

| The pessibility that the elementary rigid-plastic solution is grossly
in error is hardly negligible. This analysis omits at least four physical
phencmena which tend to reduce the deflection, i.e. lead to an over-estimate ]
such as shown in Figs. III 11 and III 12. These are: elastic vibrations;
work hardening; streagthening due to axial constraints; and load reduction due
to the finite size of the striking mass. It is entirely possible that these
effects together would lead teo a reduction in deflection of the observed
magnitude, and that the attribution of the discrepancy wholly to strain rate
effects is quite incorrect.

Of the four effects listed, probably the most important in the tests
on built-in beams is the effect of axial constraints. Work hardening might be
important for steel, but not for the brass and duralumin beams; for the tests on
these materials the plastic bending moment was chosen as the ultimate moment ,
rather than that computed from the yield moment (zee Fig. 11T 17). This choice
should more than compensate for work hardening. It is not certain that elastic
vibrations play a negligible part. In the tests on steel beams the ratio of

incident energy to maximum elastic strain energy was greater than 8 in all cases,
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while in those on brass and duralumin the smallest value was 3 or 5, Figure III
12, plotting the ratic of test deflection to that of elementary theory, shows
little variation of this ratio with Ll/LQ;

one would expect a much better agreement with theory as Ll/L2 is decreased from

if elastic vibrations were important,

5 (R = 3) to 3 (R = 10), in the duralumin tests; but the improvement is seen
to be only about 6 percent. However, the end supports, which maintained fixed
angles at the beam ends, must have been massive, and may have introduced a
constraint effect of appreciable magnitude. If the ends had been fully constrained
so that no approach was permitted, the nature of the deformation would have
been drastically altered in that bending action would have become replaced by
membrane response, at the test deflections which reached two or three multiples
of the beam depth. This implies a large stiffening effect, so that the deflections
are a small fraction of those predicted by a theory considering bending only
(see Symonds and Mentel (1958)and Nonaka (196u)),

It is difficult to feel confidence in Parkes's strain rate correction
for brass and duralumin specimens because the small amount of test data in
direct tension or compression shows a very small rate dependence for both metals
up to a strain rate of about 10 sec_l. Evans' (1942) studies included tests
on mild steel, duralumin, and brass, giving curves of yield point stress and
tensile strength for the three metals as functions of strain rate (Fig. III 18).
In view of Parkes's use of ultimate moment values for his calculations, the
dependence of tensile strength should be of particular interest. TFor the whole
range of Evans's tests from strain rate 0,01 to 10 sec-1 the results for brass and
duralumin show a negligible change in the tensile strength. (There seems in
fact to be a slight decrease at ¢ about 20 sec-l compared to the value at ¢
about 0.01, for both metals.) These results are not compatible with the strain

rate corrections of 20 to 30 percent applied by Parkes, at average strain rates of

WV"‘M"“” v:":\
i )

WIS SN P A




111

the order of 20, Only Vhiffin's (19u8) tests (as much higher strain rates) showed
a large strain rate sensitivity for duralumin; for example, specimens with 0.2
percent static proof stress 43,000 psi were found to have dynamic yeild strengths

averaging about 69,000 psi (with scatter ranging from about 60,000 psi to about

76,000 psi). These results were found from tests in which cylindrical specimens
of the test metal were fired at armor steel blocks, at velocities ranging from
about 600 ft/sec to about 3100 ft/sec. The analysis for the dynamic yield
strength was made using the method of G. I. Taylor (1948). The computed 5
values of the strain rates (of the order of 10" sec'l) and dynamic yield strengths
obviously depend strongly on the interpretation cof the tests through an analysis
that is by no means exact, and in fact demands ad hoc assumptions that affect
the computed results and have no independent confirmation.

Parkes's tests on cantilevers and fixed-ended beams can be interpreted
as showing that small beam specimens of mild steel, duralumin, and brass behave in
impact tests as if the dynamic plastic bending moment is larger than the static
value by substantial amounts, the increase ranging from about ? for mild steel
to 1.2 or 1.3 for duralumin and brass. His tests appear to show also that the
analysis of rigid-plastic type can be carried out as if the material were
perfectly plastic, but characterized by a dynamic rather than static plastic moment,
whese value can be estimated with sufficient accuracy from results given by the
simple rigid-plastic treatment. This conclusion is not confirmed by tests to be
described next by Bodner and Symonds, which showed instead that a correction of
the elementary rigid-plastic analysis bty simply correcting the plastic moment
could be grossly in error in certain cases. The effect of strain rate sensgitivity

is in these cases to change the pattern of deformations, as well as to increase

the plastic moment.
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3., Bodner and Symonds's Experiments,

Experiments of Bodner and Symonds (1960, 1962) were of two kinds,
termed "impulsive" and "impact", respectively. The former type made use of the
same basic theoretical model as that of Parkes's (1955) tests on cantilevers,
Fig. III 4, The main difference was that the tip mass was bolted to the
cantilever, and was set in motion by applying an impulsive load directly to it.
This was done either by detonating a small explosive charge on the tip mass, or
by firing a bullet which entared and remained embedded in it. This load caused
the tip mass to acquire velocity Vo in a time short compared with the time of
deformation; this velocity is tgken as the initial velocity in the theoretical
model, analogous to the striking velocity of the falling mass in Parkes's
experiments. In the second or "impact™ type of test described by Bodner and
Symonds, the cantilever beam specimen again carried a mass bolted at its tip, but
the base of the cantilever was given a shock such that its velocity was changed
in a time short compared to the time of deformaticn.

Since the impulse type experiments are close to those of Parkes on

cantilevers, and lead to rather different couclusions, they will be described

first.

(A) Impulse Tests

In Table III 6 are listed the basic conditions of Bodner and Symonds's
"impulse" tests, which may be compared with those listed for Parkes's tests
in Table III 2.

These tests were designed to differ from Parkes in two major respects.
First, the attached mass, bolted to the beam, was an integral part of the beam.
This should have eliminated uncertainties in Parkes's tests due to movement of the
striking mass relative to the beam, and avoided the obvious difficulties in his

tests with lead bullet strikers. Secondly, the tip masses were chosen so that the




TABLE III €

Impulse Test Conditions: Cantilever Beams with
Tip Mass, Tests of Bodner and Symonds (1960, 1962)

(1) Bullet fired into tip mass.

Length = 14,0 in. (mild steel specimens)
L = 6.0 in., 8.625 in. (6061-T6 aluminum alloy)
Cross-sections: depth h = 0.177 in,, width b = 0.634 in, -0,695 in.
{mild steel specimens)
depth h = 0.255 in., width b = 0.775 in, -0.795 in.
(6061-T6 aluminum alloy)
Weight of tip mass: 0.68 1b. to 1.47 1lb. (mild Steel)

0.29 1b. to 0.385 lb., (6061-T6)

Beam strength properties:
Mild stee.: o, = 29,0 ksi, Mp ¥ 146 in-1b

6061-T6 aluminum alloy: o, = 38,0 ksi, Hp = 485 in-1b

NOTE: High velocity (#000 fps) steel bullets were used, which remained
embedded in the tip mass.

(2) Explosive charge detonated on tip mass.

Length: 4.35 in. (mild steei specimens)
2.97 in., 4.34 in., 5.95% in., 7.65 in.

(6061-T6 aluminum alloy)

Cross-sections: depth h = 0,053 in., width b = 0.312 in,
(mild steel specimens)
depth h = 0.053 in, -0.1}9 in,, width b = 0,210 in.
-0.312 in. (6061-T6é aluminum alloy)

Weight of tip mass: 0.0115% 1b. -0.0232 1b, (mild steel)
0.0056 1b. -0.0154 1b. (6061-T6 aluminum alloy)

Beam strength properties:
Mild steel: o, = 4u,0 ksi, Mp = 9,62 in-lb
6061-T6 aluminum alloy: o, = 43.0 ksi, Hp = 9,42 in-1b -47.5 in-1b

NOTE: Lead azide charges in plastic cylinders were detonated in direct
contact with tip mass.
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mass ratio parameter B = mL/2C had values through the range from about 0.15 to
about 1.0, so that the variation of results with B could te studied. By contrast,
in Parkes's cantjlever tests the values of B for the heavy strikers lay in a small
range from about 0.005 to 0.10, and his tests using light strikers (lead bullets)
had much larger B values, roughly & to 26. The range of B in Parkes's heavy-
striker tests is such that in all cases more than 90 percent of the initial
kinetic energy is absorbed in tha base hinge, according to the elementary rigid-
plastic analysis, Hence these tests are not suitable for studying phenomena
associated with changes of the pattern of deformation. The tests with his light
strikers would have given a useful contrast with the heavy-striker tests, since
for these tests less than 10 percent of the energy goes into plastic work at the
base hinge., However, the significance of these tests with lead bullets must

be considersd doubtful, as already pointed out. In the Bodner-Symonds tests a
substantial change of plastic work distribution, from over 80 percent ir the

base hinge to about 45 percent, was achieved without significant change in the
testing technique.

In these tests, the determination of initial velocity was made by
measurement of the applied impulse, In the tests where explosive charges were
used, the impulse of a measured quantity of lead azide chargc was held in a
plastic container which disintegrated in the explosion, Care was taken that tie
geometry in the calibration test was closely similar to that in the test on th:
specimen beam. Good reproducibility of impulse was obtained for a given size
of charge. In the tests using bullets fired into the tip mass the impulse was
obtained from the measurement of the bullet speed by high speed photography.
Again, good reproducibility of impulse was obtained for a given bullet charge.

In both types of test, impulses could be reproduced with a variation of two

percent or less,

»

e
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A disadvantage in the tests using explosive charges, as compared with
Parkes' tests, was that the magnitude of the impulse could not easily be changed
by large amounts. Therefore, as shown in Table 11l 7(a) (mild steel) and IlI 7(b)
(6061-T6 aluminum ailoy), these tests were performed with only two magnitudes of
applied impulse. The desired range of deformation angles was obtained by changing
tip mass and (in the 6061-T6 tests) the beam dimensions.

The results are compared first with the prediction of the elementary
rigid-plastic theory. Curves labelled A in Figures III 19(a) and 19(b) show
the experimental final rotation angle near the base divided by the angle
predicted by elementary rigid-plastic analysis, Equation 2.10. The results for
mild steel may be compared with those of Parkes in Figs. III 6.

In plotted results from Bodner and Symonds's tests a trend appears for
both mild steel and aluminum alloy 6061-T6, that is missing from Parkes's
cantilever test results. This is a trend toward better agreement with tests
and elementary theory as the ratio B8 increases, so that for B * 0.7 the test
angle is approximately equal to the predicted magnitude, while at B = 0.15
the test angle is substantially less than the predicted angle--the ratio being
about 0.65 for nild steel, 0.80 for 6061-T6é. Thus only at the smallest B
values (heaviest tip masses) is the reduction in angle of rotation as large as
that found by Parkes. AT the largest 8 values in the Bodner-Symonds tests the
final angle measured in the tests on mild steel beams was appreciably larger
than the theoretical value. In other words, the elementary theory with static
plastic magnitudes predicts a smaller angular deformation than that actually
experienced by the specimen beam, despite the rate sensitivity of the material.

Parkes' tests at large B values fail to show the trend with 8 noted
above; however, these tests used lead bullet strikers directly on the beam, and
%“heir validity is questionable, As already pointed out, it seems unreasonable to

apply the simple analytical model with fixed end mass to these tests; and apart
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from the fact that the tip mass is certainly not the bullet mass (as assumed),
the effective impulse may be much less than the bullet momentum because of local
deformation.

An unfortunate feature of the Bodner-Symonds tests was their use of
beams of different lengths and cross-sections, so that changing 8 involved
changes in several variables rather than a change only of the tip mass. Also,
as B and the impulse I were changed so was the deformatior masnitude, Thus it
is not possible to compare the experimental deflections with theoretical predictions
at constant strain magnitudes. The final angles are shown in Figs. III 19 (as
average values for each set of test results at nearly constant B8). There seems
to be no systematic dependence on the deformation magnitude, and the correlation
of deformation magnitude with ratio of experimental angle to theoretical
prediction is often opposite to what would be expected if strain hardening were
playing an important role. For example, the mild steel tests at B = 0.15 with
eexp = 26° are in worse agreement than those at 8 = 0.3 with eexp = 520; these
particular sets of tests were both made with essentially the same beam dimensions
and impulse, only a change ~f tip mass being made, If strain hardening were the
principal cause either of the discrepancy between test results and rigid-plastic
theory (aexp/erp < 1), or of the trend of test results toward better agreement
as B8 increases, the agreement shouid be hest at the smallest rotation angle and
become worse at larger angles. The comparison of rotation angles in Fig. III 19
(a) thus leads to the same conclusion as the similar comparison in Fig. III 8 for
Parkes' cantilever tests, namely that strain hardening is not mainly respomsible
for the differences betwsen deflections observed in tests and those predicted by
elementary rigid-plastic theory. (The indications on this point from Parkes' tests
are mere complete and systemgtic.)

Since in the cantilever tests there are no constraints arising from

finite deflections, and strain hardening seems to play a negligible role, the
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discrepancies between results of tests and elementary theory may be presumed due

either to neglect of elastic deformations, or to neglect of strain-raie sensitivity

of the plastic moment, or to both combined. We shall consider here only attempts

to explain these on the basis of strain-rate sensitivity. The tests were

by uymuﬂ% %Wm,t%ﬂ %

designed so that the ratio K of incident energy to maximum elastic strain energy
was large; for the mild steel tests, R was greater than 8 for all but one case,
while for 6061-T6 R was greater than 3 in all cases. The influence of elastic
vibrations cannot be conclusively ruled out until more systematic tests concerning
their influence are reported; however, other explanations must presumably be
found for the discrepancies appearing in Figs. III 19, since most of these are
opposite to what would be expected if elastic deformations were playing an

important role.

Further corroboration of the above statements is given by impulse

tests of Bodner and Speirs (1963) on aluminum alloy 3003-Hl4 in a cold worked
condition (static yield stress o, = 206,300 psi at room temperature). Tests

were made on beams of depth 0.079 in., width 0.30 in. (except for some at 0,50 in.),
and lengths ranging from 2.15 in. to 8.0l in., at three temperatures: 70°P, 212°F,
and 400°F). The results are shown in Fig. III 20, The dependence on B is

very similar to that shown in Figs. III 19 for mild steel and 6061-T6. The evidence
from deformation magnitudes also is comparable to that from the results shown

in Figs. III 19; in particular, strain hardening appears unable to account for

the observed discrepancies.

The role of strain rate sensitivity in these tests must therefore be

examined critiecally. The simplest way te introduce a strain rate sensitivity

in that of Parkes, as described above. The dynamic yield strass is supposed

known as a function of strain rate, and from thiz the dynamic plastic bending

moment for a rectangular beam section. For the impulse tests, the average strain

rate according to the formula of Equation (2.16G), from the elementary rigid-
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o be computed for e€ach
test. FEach test result mav then be compared with the predicted deformeé
sngle reduced by the ratio Mp/Mé’ where Hﬁ is the dynamic plastic moment,

As shown in Table III 7, the strain rates calculated in this way
for the steel tests lie in the range 1 sec'l to 8 sec—l, while those for the
6061-T6 tests are somewhat larger, from 8 sec"'1 to about 31 sec“l. If the
test deflection is inided by that predicted by elementary rigid-plastic theory
multiplied by the ratio MP/MQ' the result is approximately unity for the points
of largest tip mass (smallest magnitudes of B). However, at the largest values

of 8 the ratioc of test deflection to the modified rigid-plastic value reaches

nearly 2 for the mild steel tests, and about 1.2 for the 6061-T6 tests.

The results for mild steel indicate that the simple strain rate correctior

suggested by Parkes is unsatisfactory in this problem. For 6061-T6 the results
point toward the same conclusion, but less positively; the maximum discrepancy
after correction is about the same as that before correction, but shifted to
the region of largest 8.

It is obvious that at least for a strongly rate-sensitive metal such
as mild steel, putting rate sensjitivity in the analysis of the impulsc problem
cannot be done by merely increasing the magnitude of the plastic moment so as
to correspond with average strain rate magnitude, and using the new constant
moment magnitude in the same rigid-plastic analysis applicable to a non-rate
depandent material. The failure of this simple method in the present problem
is apparenitly related to the change of deformation pattern. Use of a constant
plastic bending moment implies that the distribution of work done in plastic
straining remains unchanged when strain rate sensitivity is introduced., This
distribution is governed by the mass ratio parameter 8, However, as B8 is
changed over the range considered in the Bodner-Symonds tests the experiments

show that the discrepancy between theory and experiment changes drastically; at
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low R values the elementary theory stro
Such a large qualitative difference cannot be

-iuhh&kl'

approaching 1 it underpredicts.

accounted for by strain rate sensitivity if the deformation pattern retains

the same dependence on B8, i.e., if the analytical model used for a constant

=
:_i!
3
3
z

plastic moment is assumed to apply as well to the case in which Hp depends on

s

strain rates.

The strain rate dependence in the impulse problem must therefore
evidently be taken into account by a method such that the pattern of deformation

as well as its magnitude is modified by the strain rate sensitivity of the material.
This will presumably be the case if the plastic moment is assumed to have a

functional relation to the curvature rate (or strain rate, equivalently), and re-

garded as a function of position and time. The first analysis of this type was

presented by Cowper and Symonds (1957). This was extended and improved by
Ting and Symonds (1962) and by Ting (1963, 1964).
These "viscoplastic" analyses have been reasonably successful in

predicting the feature observed experimentally in the impulse tes.3, of a

deformation less than that of the elementary rigid-plastic at small B values,

and larger for B > 1. Qualitatively, the explanation may be as follows, Large

8 values correspond to small tip masses, and therefore to high strain rates in the
first phase of the elementary theory, which leads to continuous deformation.
These high strain rates geem to stiffen the beam in this phase, so that less
energy is absorbed in it. Hence more energy must be absorbed in the second
phase, with deformation mainly near the base of the beam. In this way it is

seen to be possible for the deformation at the base to be larger than that

predicted by the elementary rate independent solution, despite the fact that

rate sensitivity is a strengthening effect.

e —
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(B) Impact Tests

Reference has been made to experiments using the "impact test' model,
defined as a cantilever beam with tip mass, whose base is given a rapid change

in velocity. 1In one type of test the specimen beam is initially in motion with

constant velocity, and deformation occurs when the base strikes a massive anvil.

Such tests were described by Mentel (1958) and by Bodner and Symonds (1962),
Alternatively, the beam may be initially stationary and the base subjected to
impact so that it acquires a velocity in a short time. This method has the
advantage of eliminating vibrations of the beam specimen that may be present
just before impact. Tests were reported by Gillis and Lerner (1960) using this
technique, Finally, a third method which is equivalent to the others for very
short acceleration times is that which uses explosive or shock wave loading
rapplied to a fixed-base cantilever, as by Bodner and Humphreys (196u),

We will review here briefly the main experimental results of Bodner
and Symonds (1962) and Gillis and Lerner (1960), these being the most complete
series. The test conditions of the two investigations are summarized in Table
III 8{(a) - (b). The results are summarized in Table I1l Y(a) - (bL).

The elastic-plastic treatment of this problem was discussed by
Alverson (1956, 1958) and by Stallybrass (1960). We are here primarily
concerned with the rigid-plastic approach, since plastic deformations are
assumed large.

The rigid-plastic solution was presented by Mental (1958)
and discussed also by Ting and Symonds (1962), We outline below the essential
features of this solution, since it serves as a guide for the experiments as
well as for the viscoplastic analysis.

The base velocity is assumed to be V{t) = Vo[l-f(t)] where

f(t) = t/t_ for t St f(t) =1 for t 2t . V, is the change of velocity of
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TABLE III 8 (a)

-

éé

impact Test Conditions: Cantilever Beams with
Tip Mass, Tests of Bodner and Symonds (1962)

- s nbabataiy

Two cantilever specimens attached transversely to carriage, accelerated by
HyGe machine, propelled along track to impact with heavy mass,

Specimens: lengths approx, 4,5 in., 2.0 in, i
width 0.312 in. :
depth 0.125 in. (mild steel) K

0.119 in., 0.125 in. (6061-T6
aluminum alloy)

oo,

Tip mass ratios: 0, mild steal specimens)
0, 6

1
.1, 4.3, 12.9 (6061-T6
alurinum alloy specimens)

Beam strength properties:
Mild steel: o

30,0 ksi, M 36.6 in.-1b,

0: = 44,0 ksi, Mp = 53,6 in,-1b,
Aluminum alloy 6061-T6: o, = 43,0 ksi
Mp = 52.4 in.-1b. or 47.4 in,-1b.
Impact velocity range: 35 ft./sec. to 100 ft,/sec.
Stopping time range: 0.07 msec. to 0,37 msec,

TABLE III 8 (b)

Impact Test Conditions: Cantilever Beams with
Tip Mass, Tests of Gillis and Lerner (1960}

Two cantilever specimens attached transversely to carriage, subjected to
impact by mass propelled along track; specimen carriage decelerated slowly
by friction brake.

Specimens: lengths approx. 4.5 in.
width 0,312 in.
depth 0.125 in., (mild steel)

0.119 in., 0.127 in. (6061-T6
aluminum alloy)

Tip mass ratios: 0, 0.3, 0,7, 1.4, 1.9, 2.1 (mild steel)
2,0, 3.9, 5.9 (6061-T6 aluminum alloy)
Strength properties:
Mild steel: 9, = 41.0 ksi, Hp = in.-1b., 53.6 in.-1lb.
Aluminum alloy 6061-T6G: Hp = 47,5 in.,-1b., 56.5 in.-1b.
Impact velocity range: $3 ft./sec, to 96 ft./sec.

Stopping time range: 0.07 msec, to 0,10 msec.
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TABLE III1 9{(a)

174
IMPACT TEST RESULTS - MILD STLEL BEAMS
Tests of Bodner and Symonds (1962)
Gillls and Lerner (19¢0)
P - -~ |Approx,Exact
v T exp m e 8 VP VP
] 8 tf exp (8 8
No.| L K in/sec |usec {R deg. TP rp (87 (1 - @ v
rad. Rad. 1 rp t rp re rp
8 |u.us]2.02 §94 256 |u3 | 70.00 2.26 106 2.24 0.543 [0.55
(1.222)
g | " SB0 333 {30 | u7.0 1.59 68 1,56 0.525 [0.57
[0.821)
00" " 511 ale |23l w2. 1.23 63 1.21 0.607 |0.57
[0.736)
1" " 639 269 |36 | 72.5 1.92 93 1.90 0.667 |0.56
(1.268)
112" " 589 368 |31 | s5.0 1.63 63 1.60 0.600 ]0,57
K0.961)
13" " 415 315 [1s | 33.s 0.810 47 0.79 0.735 [0,59
K0.586)
1wl " 330 356 19,5 1u.% 0.513 36 0.50 0.508 |0.,60
K0.254)
1s|™ " 702 298 juu | 69.5 2,32 92 2.30 0.528 |0.55
K1.213)
1 [4.46[2.00 816 202 26| 78.0 2.13 98 2.11 0.680 {0.55
(1.362)
B2 | " 650 168 |16 | s50.0 135 9y 1.33 0.690 [0.56 | o0.%85
(0.873)
B3 | 612 179 |1w | wa,2 1.20 87 1.19 0.688 [0.56
(0.771)
| | |
gzs u.u46|2.06 631 74 132 ‘ 48,8 1.30 294 1.30 0.65u
& K0.852) |
H27 | " 675 83 137 ] s5.7 1,49 281 11.u9 0.05u |
S K0.973) ! ‘ |
:28 " " 739 —= Jau | 67.8 1,78 322 11.78 0,664
hF (1.182) ‘
-3 ' ]
3 R '
()

Specimens A8 - AlS, Bl - B3 (Bodner
0o = 44 ksi (B specimens); Beam
Mp = 53.6 in-1b (B spec.)

and Symonds, 1962) Mild steel: Oy =
depth 0.125 in., width 0.312 in. M

Specimens 26-28 (Gillis and Lerner, 1960, specimen group 56) Mild steel: o, = ksi,
Mp = 49.6 in-lb; Beam depth 0.125 in,, width 0.312 in.

L]

30 ksi (A specimens),
p 36.6 in-1b (A spec.)
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the base (or the initial velocity of the beam due to explosive loadi.y in
Bodner and Humphreys' tests),

The initial ripid-plastic response pattern is governed by VO/to and
by the tip mass ratio k. Figure III 23 summarizes the situation, and shows that
ir Volt° :.21&!4p/m1.“1 an< k > 1 an interior plastic hinge appears with sense of
bending opposite that of the base plastic zone. (Figs. III 22 (c)). The
analysis leading to Fig. III 23 neglects the moment of inertia of the tip mass
about its centroid. It was shown by Mentel (1958) that neglect not only of the
tip mass inertis but also of the presence of the internal hinge leads to
negligible errors in the main deformation at the base hinge. Thus a pattern of
deformation consisting of a simple rotation about an axis at the base (Fig. III
22(d)) is a very accurate one. For this simple linear velocity distribution
the elementary rigid-plastic analysis leads to the following results for the

final rotation angle orp and the time te at which motion stops:

t
= -2
0, = 3n( % ) (3.22)
where
2 2,
o o 3120 PV . o Le2c ™Y
m 8 1+ 3k M3 £~ T2 M
P P

The test results of Bodner and Symonds (1962) and Gillis and Lerper

3 9 /8 vs‘tf/to. In these experiments

(1960) are presented as plots of
8 “exp rp

the stopping time to was so short in relation to te that the "correction factaop"
1- tO/tf of Equation (3.22) was within 2 or 3 percent of unity. (This was
intended in the design of the experiments, so as to minimize effects associated
with details of the impact, such as the shape of the velocity-time curve,)

Comparisons are shown between test and theoretical results in Figs.
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~yw o s v \ N et 10 - N : . iS4 change V
iIl 24 (a) and (V) , plotting eXPlurp as 8 o’
where arp is the elementary rigid-plastic result as calculated from Equation

(3.22) These comparisons are made for a single mass ratio k, nameély K = 2.0,

Other values of k were used in the experiments, but to keep complications to a

minimum in the present comparisons, tests with only one beam geometry are consid-

ered,
In the comparison shown the energy ratio R was greater than 9 for

the mild steel tests and between 5 and 7 for the aluminum 6061-T6 tests. These

values are the ratio of the plastic work MpBexp in the test to the quantity

HQLIZEI, which is taken as a measure of the maximum elastic strain energy that

could be stored in the bean.

The plots in Figs, III 24 show large scatter of results, despite
the restriction in each caue to a single value of k and the same beam geometry.

This scatter has not been explained, and the results are to some extent
doubtful because of it. It is perhaps associated with elastic vibrations,
despite the large values of energy ratio R. The importance of elastic

deformations might have been increased by the raising of the upper yield stress,

in the mild steel tests, The upper»yield effect is enhanced in impact tests,
and seems to be further increased in bending as compared with simple tension
or compression, as shown recently by Aspden (1963); see Aspden and Camp’ell
(1966).

Another possible source of scatter in the tests of Bodner and
Symonds is the fact that the beam is in motion prior to impact. The base of the
beam is moving with constant velocity, but vibrations excited by the initial
acceleration of the beam are still appreciable. In the tests of Gillis and

Lerner this difficulty was removed by having the beam stationary and at rest

prior to impact. Some reduction in scatter was obtained by this change in

Wb s ‘,,n.weaaw;.‘ﬂmmhww
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technique; average deformation values at a given velocity are about the same
as in Bodner and Symonds' tests.

The plots in Figs. III 24 show that for both mild steel and 6061-Tb6
the measured final anguiar deformaticons were substantially smaller than those
predictea by elementary rigid-plastic analysis over the range of impact
velocities used, the ratios of test deformation to the value from elementary
theory being approximately 0.5 to 0.7 for mild steel and 0.6 to 0.8 for
6061-T6.

The neglect of strain hardening in the elementary rigid -plastic
theory again can be eliminated as a major cause for this discrepa Figs.
IIT 24 show the deformation angles in degrees for each test. If strain
hardening had been a major cause of the reduction of deformaticn from that
predicted by the elementary theory one would expect some correlation between
the discrepancy and the magnitude of the deformation, with agreement becoming
worse as the deformation angle is increased. No downward trend in the ratio
eexp/erp is found in any of the test series. As far as one can judge, in
view of the scatter of results, the observed deformations remain at
essentially the same fraction of the values predicted by elementary theory,
independent of velocity and strain magnitude.

We consider now the approach to a viscoplastic analysis.

Diffei:ential equations for the beam problems have been derived
and solved, in which the plastic bending moment in excess of the static
magnitude at each section is a chosen function of curvature rate. The
pattern of deformation shown in Fig. III 21 is still postulated. An interface
x = z(t) is assumed to separate the region near the base where plastic

deformation occurs at time t from the region x > 2z which moves as a rigid

body. The bending moment at the interface is MP’ the static plastic moment,
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M (%)

> ﬁp at x < z, being governed by the strain rate. The following
relation was used in the analyses by Cowper and Symonds (1957), Ting and
Symonds (1962) and Ting (1963, 1964):

& =(sgn M) (',—':l - P, M| > M
p r

k=0 IM] < M (3.1)
P

where & is the time rate of change of the curvature «, and p and B
are constants. This relation was derived from the corresponding one for
simple tension or compression,

= (sgn o)(lgi -1)P, e >0,

Mas
h

e =0 Icl < g (3.2)
o]

where o is the stress, ¢ the strain rate, and D is a constant of the material
having dimensions of strain rate. The above simple form of non-linear
viscoplastic relation can be made to fit published data with accuracy
satisfactory for engineering purposes. Numbers for D and p chosen to
fit Manjoine's curve for mild steel and Parkes' composite curve for duraluminum
are;

Mild Steel D = 40 sec_l ]

Duraluminum D = 6500 sec-l P =AU

S

The constant B in the bending moment-curvature rate formula is related to

D (by calculation assuming plane sections to remain plane) as follows:
.p 2 ¢2p t1lp
B-Dh(2p). (3.3)

when ¢ 1is expressed in (seconds)-l.

The pattern of deformation shown in Fig. III 21 apparently resembles
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that of the first phase in the elementary rigid-plastic sclution of the same
problem, sxcept that the moment in the plastic region is not constant but
varies from Mp to Hm at the base. A more important difference is that
instead of there bheing two distinct phases the configuration of Fig. III 21

appliea through out the motion. During the deformation the interface moves

toward the base and strain rate magnitudes decrease. When they become zero
motion ceases, so that the final bending moment at the fixed end is M_.

In order to solve the problem completely (in the framework ol iie

‘-4 NN CAR W NN N e

conventional beam equations) it would be necessary to solve the following
partial differentiai equation in the plastic region 0 <x < e(t):
a“u

*
ax“ P

zla
[-%]
=
I%
1

L] ms‘

— ° 0 {3.4)

k-4

where u = B . 1>1.

o gl B e
- A T A AT I 405, R s e
Liie * € o ’

m This fourth-order non-linear parabolic equation must
be solved sﬂbject to conditions at the boundaries x = 0 and x = z(t); z(t)
}F defines the interface between regions u >1 (0 <x < z) and lu] < 1, (2 < x < L).
- The unknown function z(t) must be found from the equations of momentum

conservation for the whole beam and the continuity conditions at the

.
Y- JEgg
interface.

This presents a difficult problem, even for a wholly numerical

analysis, and the complete solution has not been carried out. However, Ting

: (1963) and Ting and Symonds (1962) considered the reiated impact problem,
. vhere the base of the beam is impacted so that it attains a velocity vV, in
. a specified short time.

The pattern of deformation is taken the same as in
Fig. III 21. Ting (1963) obtained the complete sclution of this problem by
an iterative numerical technique, The approximate solution described by

) Ting and Symonds (1962) is based on what at first appears to be a drastic
. simplifying assumption, namely that in the plastic zcne 0 < x < z(t) the

. inertia forces are zero. This may perhaps be argued as plausible on the grounds
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2

wat the resistance to motion im the plastic vegion ls primarily due to
bending strength, enhanced by high strain rates, rather than to inertia.

In any event, this simplification was shown to be permissible in the impact

- o it

problem treated, the final angles differing from those cbtained in the

complete solution by amounts less than one percent in two examples of mild
steel beams, and by about two percent in two examples of aluminwn alloy
6061-T6. The success of the approximation of neglecting inertia in the
plastic zone is presumably related to the fact that during most of the
deformation the plastic zone is presumably related to the fact that during
most of the deformation the plastic zone is fairly small (less than one-
third the beam length); the momentum of material) adjacent to the base of the
beam is small, and its contribution to the moment of momentum smaller still.
Hence an approximate inclusion of this momentum, or its omission altogether,
may lead to small errors in the finai deformation.

The neglgct of inertiazl forces means that the shear force is :
constant in the plastic region. Then instead of a fourth order non-linear

partial differential equation with an unknown moving bcundary, one has a

iobe

simpleyr problem of coupled ordinary integro-differential equations expressing
conservation of linear and angular momentum.
We shall write the equations for a viscoplastic analysis first in

general formg applicable either to Parkes' problem (statisnary beam with tip

mass subjected to an impulse) or to the problem briefly mantioned above in

which the base of ihe beam is given a change of velocity in i short time, i.e,
the "impulse" problem and the "impact" problem respectively.

After outlining the viscoplastic approach to both preblems, and
showing results for the impulse problem, the impact problem will again be
looked at in more detail, Experimental vresults are available for this

problem as well, although, as will be seen, they are in some respects unsatis-

e .
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factory.

(C) Viacoplastic Anslysis

We consider a beam with given initial velocity distribution vo(x) =z v(x,0).
In order to take approximate account of finite deformations in a simple way the
velocity v(x,t) is defined as ucrmal to the deformed center-line, x being the
distance from the base to a typical cross-section measured along the center-
line curve (see Fig. III 21). The initial transverse womentum and angular

womentum with respect to the base point B are, respectively,

L
J = | mv (x¥dx + GV_ = (amL + G)V {3.5a)
0 o] (o] [»]

Jo

L
H = | mvxdx + LGV = (= amL? + GL) V (3.5b)
[} o ] 2 o

)

where a = 0 in the impulse (Parkes's) problem, a = 1 in the impact problem, and
m is the mass per unit length along the center-line, At time t > 0, with
deformation of the center-line as indicated in Fig. III 21 the component of

momentum parallel to the initial direction of motion is

L

J(t) = | mv cos 6 dx + GV cos 81 (3.6a)
0

wWhere €{x,t) is the angle of the tangent at x with the horizontal and el = 8(L,t)

is the angle at the tip. The angular momentum with respect to B is given

approximately by

H(t) = mvxdx + GVL (3.6b)
0

This correctly represents the moment of momentum about B for small deformations,

ormations only if the deformed center-line curve were
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a straight line. It is suggested as a good approximation for beams with a tip

mass roughly equal to or greater than that of the beam by the fact that the

final deformed shape of such beams has been found in experiments always to be

very closely linear outside a short hinge region near the base.

The equations of conservation of momentum for the beam and attached

mass are
rt
- Qm(r)dt = J(t) - Jo (3.7&)
4
t
- | M (1)dT = H(E) - H (3.7b)
0

where qm and Hm are the opposing shear and bsnding moment at the base B; J(t),
H(t) are given by Equations (3.6); and J09 Ho are given by FLquations (3.5).

Boundary conditons at the base are

= v =
8, = 3% {0,t) = 0 (3.8a)
Yy ® v(0,t) = Vo {1 - £(v)] (3.8b)
where for the impulse problem: f(t) =1
for the impact problem: f(t) = t/to, t :_to
and £(t) =1, t 2t

As already discussed, our solution will be simplified by neglecting
inertia forces, &nd hence assuming that the shear force in the plastic region
0 < x < z(t) is independent of x, i.e. in this region Q = Qm(t). Therefore

dM/dx = -QIn and the bending moment varies linearly:

(3.9)

E

A el Ay by mm“b‘fﬂ
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where Hm(t) is the base moment and Hp is the static plastic limit moment,
Using Equation (3.1), the curvature rate &« is
2y X
PR WA (1 - 2P, in 0 ¢« x <z (3.10)
2 m z -

ax

M
where & (t) = B(o> - 1)P,
m M
P
In the region z < x < L the bending moment is less than Hp, and there-

fore x = 32v/3x2 = 0; this segment moves as a rigid body. Thus the assumption
Q= Qm enables the curvature rate to be written as a known function of x in
terms of the unknowns im(t) and z(t), and from 32v/3x2 the velocity can be
evaluated in terms of im and z,

The evaluation of the momentum integral J(t) involves the slope angle

8(x,t). This is related to v(x,t) by

5 % 5 (3.11a)

so that

t
8(x,t) = J %E'(X,T)dt (3.11b)
°

The treatment of finite deformations is greatly simplified by the

further assumption that J(t) may be written for a uniform beam as

(3,12)

L
J(t) =z m cos 61 J vdx + GY cos 61
°

*

vhere el is the slope angle at the tip, x = L. Tais is strictly true only if
the deformed center-line is a straight line, but it may be justified in the

general case, Consider the two approximations

z z
(a) m J v cos & dx =2 m cos el J vdx (3.13a)
o o
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L L
(b) m | vcos 6§ dx =m cos 61 vdx (3.13b)

iz ‘z

Experiments show the final shape to be nearly straight away from a region near
the beam base whose length is of the order of several beam thicknesses; this
suggests that (b) is a good approximation. Although (a) is not so good an
approximation, it is nevertheless permissible because cos el differs appreciably
from unity only when =z is small and the integral in (a) then represents a
very small part of the total momentum.

Then equations of the viscoplastic problem thus simplified can be
written in terms of the three variables, km(t), z(t), and Gl(t), after putting

, 1 . 1
K

— M g =
. LT . “mp
My o= MLl P Q, * & ) (3.14)

The three equations in these unknown functions are

ok L L
- B)P = -
j ;E{B ¥ dv = m cos Bl J vdx + GV cos 6l Jo (3.1%a)
o o
t Y L
- I ML+ (-B—“‘-)P] dt = m J vxdx + GVL - H_ (3.15b)
o o
t
- v
61 =3 (L,t)dr . (3.15¢)
o

The integrals in the right-hand sides of (3.15) may easily be expressed in

2
terms of im and z Dby using the expressions for 2—%- appropriate to the
x
intervals 0 < x < 2 and z < x < L; for the first interval Equation (3,10) applies,
2
while for the second 2—%-: 0. We have
ax

e
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2

X
2

v o 3 v(E,t) de
o %

.4
2
vix,t) = Vb(t) + X —g-! - J £ 37v(E,t) de
x 2e?
o

Zg
. v m -1 -Xpt1l )
For 0 < x < z: ™ * W (1 (1 z) ] (3.16a)
z'.‘m z X,.p + 2

v(x,t) = Vb + Y {x + ) [y - ;) - 1]} (3.16b)

oV z'Em .
For z < x: i P T = Bl(t) (3.17a)

'.‘m z .
v(x,t) = Vb + YT [x - X 2] (3.17b)
z-‘:m 2

V(t) = Vb + p* T (L - m] (3.18)

Evaluating the integrals in (3,15), we obtain finally the system

of equations:

z
°

o 3

- 2z 2’ + z’ } cos @

¥

Pl 2L e (pe2)(pragtd 1

&mGLi z z
+ prl {T: 5 } cos el (3.1%a)

(p+2)L .
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t 1
8= 2 2
- _myP = v (PL -f -y (%mb
] MIL+ (GF Jdr = V(- ¢ GLI1-£(1)] v ( + 6L)
(o]

2
) 4
xmmL 1z z? z"
* 5 i3 L 5 * u!
P N 2(p+2)L (p+2)(p+3)(p+u)L
émGLa i 2
+ {= =~ - } (3.19b)
! ptl (p+2)L2
t. timz
8, = 0(Lyt) = | 6 dr = | 25 dt (3.19¢)
o 0

The particular forms for the impulse and impact problems will be
written, By definition the impulse problem iias a = u and £(£) » 1, and the

first two of Equations (3.19) become:

Impulse problem:

t 1 3 :
‘ HE "‘m F kmmL 1 z l+k 22 z3 .'
(—=) dt = GV - —— {(= + k)—-——-—_-+—————-———-} cos & {3.20a)
o ? B o ptl 2 L p+2 L2 (p+2)(p*f".»3 1
Jt % % i'mmL“ . %‘—fk .2 L
M [1+(—=)"Jdt = GLV_~ =———— {(5= ¢+ k)= = — } (> 20b)
R :
P c ptl 3 L pt2 L2 (p+2)(p+3)(p+'¢)L“

[

where k is the mass ratio, k = g—L .

In the impact problem we have a = 1 and f(t) = t/t° in the tim:

interval 0 < t < t . and f{t) = 1 fer t < t_. If to is small it is reasonable

(]

A

to take cos el 1 in the interval 0 < t < T, Then the momentum Equations

(3.19a, b)become;
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Impact problem:

t 1 )

K & = «_mL 2 3

£ (P dr = v (mLG)E(L) - B (GO - DX E &) cos 8, (3.21a)
° z ° p? P* (pt2)(pt3)L
' im % mL2 imMLq 1 z %+k z2 z“

M [1e(—)"dT = V (5= + GLXMf(t) - —— {(5 #k) ~ =— == ¢ }
o p B o 2 ptl 3 Loopr2 2 (p+2)(p+3)(p+u)Lu

(3.21b)

Initial conditions must be stated for both sets of Equations (3.20)

and (3.21), We have 8,(0) = 0 in both problems, but the starting values of

z and im are different. There is some arbitrariness; the choice of the

assumption k = km(l - x/z)P means that exact initial conditions on velocity cannot

be satisfied. For the impulse problem where the disturbance originates at the

tip mass, we take z(0) = L. For the impact problem the disturbance is felt

first at the base, and we take z(0) = 0. The initial curvature rate at the
base im(o) can be taken as zeroc in the general impact problem where the base
moves with veloéity v, (1 - t/to) for t < t, and is at rest for t 2t

The initial value im(O) for the impulse nroblem may be chosen so as

to make the initial velocity pattern give the correct angular momentum.

Putting t = 0, z = L in Equation (3.20b), this gives

2.
mL°x_(0)
, m (p + 2)(2p + 9) (3.22
kvo p*+2 k¢ 6{p + 3)(p + &) } (3.22a)

Since Equation (3.20a) as it stands would not be satisfied with the above value

of im(O), it may be modified by replacing the expression in brackets on the

right hand side by the following:
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With this change, the linear and angular momentum conservation equations both

o il

give the same initial value im(O).

Equations (3.20) are essentially the same but differ in detail
from those solved by Ting (1964), Ting's "First Solution' omits the momentum
contributions for the plastically deforming segment in 0 < x < 2z, His
"Second Solution" equations include contributions from these momenta; however
the contributions actually obtained from the assumption Kk = im(l - édp were
modified so that they are both somewhat simpler, and so that the two momentum
equations give the same initial value for km.

Numerical solutions of the viscoplastic equations (3.19) may be
carried out by a step-by-step procedure, Suppose the three functions are

known at time t, : &m(tj). z(tj), and el(t To find their values at t

j i j+1°
one may guess &m(tj+1). Putting this in Equation (3.19b) one may scolve the
resulting equation for Z(tj+1)' These values put in Equation (3,19¢) enable

el(tj+l) to be calculated. The three values are then substituted in
Equation (3.19a) as a check; if left and right hand sides do not agree the
calculations are repeated with a revised trial value of im(tj+l). and the
process is continued until agreement is obtained. The deformation stops
when the curvature rate im is reduced to zero, corresponding vo the bending
moment at the base being reduced to Mp‘
Calculations of this type were carried out by Ting {1964) for the
impulse problem, using modified equatione, as already described. Since errors
were noticed in the published results in two of the four cases calculated,

all were recalculated. Table III 7(a) gives the results from the "complete

solution" (Equations 3.20) as well as from Ting's "first solutjon” in which




e ey, Y

Juo

momentum contributions from the plastically deforming segment are omitted.
The differences are very small in three cases, and about 10 percent in the
third case.

Comparisons with test results are also indicated in Tables III
7(a)-(b), and in Figs. III 19(a)-(b). For mild steel the agreemen: with
observed final deformations of the viscoplastir theory is improved in the

specimens with large tip mass {small B) as compared with elementary rigid-

w

plastic theory. However when the tip mass is small (B = 1 or larger)
the viscoplastic analysis leads to an underestimate by some 20 percent. This
is, however, much better agreemert than that cbtaire: by using Parkes's strain-

rate correction factor, which predicts defermations that are too small by

12

nearly 100 percent at £ = 1., For the tests on 6661-T6, Fig. III 19(b), the
viscoplastic theory leads to ar over-estimae (at 8 = 1)}, of about the same
magnitude as the error in the other direction obtained by use of a simple
correction factor on the plastic moment.

To summarize, we have shown compariscns between deformations
predicted by a viscoplastic analysis based on a moment-plastic curvature
rate relation of simple type (Equation 3.1) and test results for a particular
type of beam test, in which an impulse is applied to a mass at.thf tip of a
fixed-base cantvilever. The introduction of strain rate sensitivity intc the

differential equations does change the pattern cf deformations substantially;

the deformations are more nearly confined to a region near the base, independently

of the ratio of tip mass to beam mass. Quantitative agreement of final
deformations predicted by this theory with those observed in tests is only
fair (Fig. III 19(a)-(b)), but is very much better than obtainable when a
simple correction is applied to the statically measured fully plastic moment;

A)so shown in Tables III 7 (a)-(b) and Figs. III 18 (a)-(b) are
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deformations determined from a simple approximation formula suggested by
Ting (1264 ). This formula w.ll be discussed later and compared with other
approximate methods.,

(D) Appruximate Expressions

The complete solutions of the viscoplastic equations (3.20) and
{(3.21) are leﬁgthy. and it is natural to look for simplifications that will
retain essential features.

Immediate simplifications in the momentum equations of either the
"impulse" or the "impact" problem, Equations (3.20) and (3.21), are suggested
from the fact that the expoment p in the strain rate law is large; com-
monly p > 4. In the moment of momentum integral, we may write

t

Mp[hA(T)]dt z Hp(lh\o)t (3.23)
(s}

where

¢ L
AGo) = (RO

and Ao is a constant representing a suitable average of A(1) in the interval

(0,t). Numerical solutions show the actual variations of km(r) to be large

during the deformation. An example of a calculated curve of %m(t) is shown in

Fig. III 25(b). Although ém first increases from 10 to 25 and then decreases

approximately linearly to zero, the change in 1 + A(1) remains relatively small

(Fig. TII 25(a)). Until the final instants of the motion the variation of

1+ A(t) from the starting value 1 + &(V) is only some 7 pewrcant. Hence it is

% (0) L

a quite accurate approximation to take A, = AC0) = [ 5 JP

» corresponding to

the initial curvature rate.

Consider the viscoplastic equations of the impulse problem, Equations

H
i
&
1
i
3
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(3.20). The third term in the bracket of each equation is small compared with

first. In the moment of momentum equation (3.20b), if p = 5 the third term

is less than one percent of the first term under the worst circumstances when

k = 0 and z = L, and still smaller when z << L and k is 1 or larger. In the

transverse momentum equation the third teru is less than one percent of the

first if z < L/2, as is the case for most of the deformation period, Fig. III

&
25(b). The same remarks apply equally to the equations 3.2D for the impact

problem. Hence the following simplified forms of the viscoplastic equations

(3.20) and (3.21) apply with very good accuracy:

t
[s43 . 2,1 . 1+ k 2
= - = ¢ ) - fal o
HPAO Y3 GVQ GlmL (2 + k) {1 ) L] cos el (3.24a)
{(=+ k)p + 2)
‘0 \ 2
« 31 %* K 2
M {1+ Ao)t = GLVO - BlmL (-5 + k)1 - T -I;- (3.2ub)
P (3 + kK)(p + 2)
where &m(o) i
AO ~ [“‘E——' D
ith
wlt GVO(p +2)
& {0y = (3.24¢)
m mLa[k + 1

1
37 6(p + 1)

The complete solution for several cases determines a curve of 6 as
function of time like that of Fig. III 27, the main feature of which is the

straightness of the curve except near the start of the motion, t = 0. This means

that a good approximation to the final value of 6 can be obtained by taking th2

8(t) curve to be a straigh* line cutting the time axis at t = tf and having the
slope of the curve at t = t

£ Here te is the instant whzn motion ceases,

é(tf) = 0; z(rf)= 0. From Equation (3.24b) we have
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M1+ A )= —alom G e k) = —2 (3.25) ;
p o £ 3 tf

The approximate linear solution for 6%(t) is thus z
mL3(E ¢ k)% = GLV - M (1 + A )t (3.26)
3 "o P o

and the final angle is given approximately by

g% = 2 L (3.27)

vp M 1
P (3 + k)(1 + Ao)

A formula for Ao was given in Equation (3.24c). This may be simplified
and improved by dropping the term -é(p + 1) in the denominator. This change
{slightly decreasing Ao) is in the right direction tc improve the linear

approximation. Hence we obtain the following solution for the final angle

ov? .
e::p = 2—H°- - (3.28a)
- %*
p (k + 3)(1 + Ao)
GV (p + 2) =
AR = [ —° (3.28b)
° EmL (x + %)

This formula was derived by Ting (1964) by an essentially similar argument,

The time at which deformation ceases is given tc the same approximation

as
GLVO
t;‘ = FTOTEY (2.28¢)
P )

Finally, the equation for transverre mcmentum conservation, together with
the above expressicns for A; and t*, furnighes an approximate formuia for the

length z* of the plasti: zone (aviraged over the defarmation time) as
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AR
z -2 (3.284)
*
1+ Ao

l"lb;l

How well the predictions of the simple approximations of Equation (3.28)
compare with those of the complete viscoplastic sclution and with experiment results
is shown by curves ¢ in Figs. III 19 (a), (b).

Considering final rotation angles, the approximate solution differs
from the complete solution by about five percent at the largest £ (smallest tip
mass), but the difference is negligible at low # values. The complete solution
is closer tc the test results for the final angles than the appropriate solution.
Thus, at the largest 8 values, the approximate theory predicts a final angle
about 20 percent smaller than the test values. The hinge lengths predicted by
Equation (3.28d) are larger than those evident in photographs of final deformations,
which show the length of the deformed region near the base as roughly four times
the beam depth, or one tenth the length, The formula predicts average z/L
magnitudes of the order of 0.5 or larger for mild steel.

To sum up, it is seen that the simple approximate solution furnishes
rasults in good agreement with those of the complete viscoplastic solution, but
vhose agreement with experimental deformation angles is less satisfactory. How-
ever, the agreements with experiment of both the complete viscoplastic theory
and the approximate formula over the range of £ tested, are very much better
than that of the elementary rigid-plastic theory, either uncorrected or multiplied
by a rate correction factor as in Parkes's method.

Slmple approximate formulas for the impact problem can also be obtained
from the complete equations, Equatious (3.21).

In the same spirit as for the approximate solution of the impulse

problem, immediate simplifications can be made by dropping all but the first
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term in the bracket in the right hand sides of Egquations (3.21) a and b. In the
present case z/[. = 0 att = 0and t = tei Z remains usually less than L/2 during
the deformation. A typical curve for z/L is shown in Fig. III 29(a), cbtained
by calculation from the complete viscoplastic equations. Fig. III 28 shows the
near constancy of A over most of the time of deformation. If we again replace
A(t) = (-cm/B)l/p by a constant A, the equation of conservation of angular

momentum (3.21b) becomes:

M (1 + R0t = VmLi(k + 2)ee) - 6mL3(k + 3 (3.29)
P Lo} 2 3

where for t <t  f£(t) = t/t ; t >t , f(t) = 1.

We have used, as before, the relation from Equation(3.1%c) namely

6 (t) = , (3.30)

and we have written @ in place of él’ for simplicity.

An example of a 6(t) curve is shown in Fig. III 29(b) by calculation

.

from the complete viscoplastic thecry. TFor t > t the curve is nearly a straight

line. If we suppose t is small (to << tf), it is a reasonable approximation to
assume a linear variation of 8(t) over the whole deformation time, and hence to
write

S -3 1 2 1 . T
emL™ (k + -3—) = VomL (k + 3) - Hp(; + A)t (3.31)

According to this egpation the deformation ends at

\7 mLZ(k + i)
tr oz O 2 (3.32a)
f M (1+R) evea
p
and the final angle is
V;mL (k + %) i

8! = (3.32b)
™M aeba+ b
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It remains to obtain a suitable value for A from the viscoplastic
theory. We can write the linear momentum equation (3.2la) in terms of 6 and
.‘cm, after eliminating z by use of Equation (3.30), and dropping the 22 and
23 terms in the bracket. Then the equation after differentiating with respect

to t {is

t>t, f(t) = 1,

¢ (ty = & Bmlck + L
HpA(t)xm(t) = 6 emL (k + 2)(p + 1)

We may set A(t) = A, and evaluate

-‘:m(o) 1/p

A= —5—]

Taking 8 and 8 from Equation (3.31)and putting t = 0, ve obtain

1.2
- v (k + =)
c':“‘(0)=li.A —g(p+l)——i—2
A L (k + =)
3
and
- 1.2
Vipt+tl (k+3¢1
- + =
F=(:tr oo 5 —< 5 (3.32¢)
A LB (k+§)

For given Vo and beam constants the above furnishes an estimate of A that can be
used in Equations (3.32a, b). Finally, from the linear momentum equation with
t = tf We can obtain an average value of the plastic zone length as

k +
kK +

A
144

=)=

Finally, it is worth noting that the approximate viscoplastic solutions

written above are the same as those that woulid be obtained if we assumed in the

beginning that the deformation is governed by an expression of type
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vix,t) = v¥(x) T*(t)

This represents a deformation in a fixed pattern, or mode shape, and such a ; ;;
sclution may be called a mode solution. The use of such forms of solution to ;
obtain approximate sclutions of dynamic loading problems has been discussed :
by Martin and Symonds (1966) for general one-dimensional structures of rigid-
plastic material. It can be shown, for example, that for any such structure
subjected to a loading cof impulsive type (i.e. with prescribed initial velocities),
the velccities decrecase linearly to zero. (Criteria were derived for choosing :
the mode shape so as to give the best approximation to the complete solution.

The approximate solutions derived in the foregoing discussion of
viscoplastic solutions were found to be of this type. In other words, when k.
rate sensitivity of plastic properties is included in the analysis, the
deformation tends to become of moedal type, in these examples. Hence these
results provide some indication that the simple mode approach may give better
results when applied to a rate sensitive material than for a rate independent
material. However the number of examples for which compariscons with
experiments have becen made is too small to allow firm conclusicns of this
type.

Recently Bodner (1967) at Technion-Israel Institute of Techmology has
made a new series of tests on mi.d uteei cantilevers with tip masses, similar to
the "Impulse Tests" described above (pp. 112-122). The nev results were closely
comparable., They provide des:rable confirmatior of the viscoplastic analyses
and of the usefulness of ve: mode appro (mation technique in this preblem. In
fact, strain gauge measurements gave quive striking evidence that the actual ;-

deformation process ¢losaly resembles that assumed in the mode solution, and pre- ; ;

dicted by ths full ana’ysis with strain rate dependence.
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4, LCxperiments of Florence and Firth

Florence and Firth (1965) havs reported tests on supported and clawped
beams of steel and aluminum alloys, with uniform loads applied explosively. The
tests were designed to investigate espacially the applicability of rigid-plastic
theory. They provide a valuable complement to the tests on cantilevers dis-
cussed above, They were comprehensive, well planned and executed tests. Never-
theless they also illustrate the basic difficulties in making and interpreting
tests on dynamic plastic deformations of structures.

The elementary rigid-plastic solution for a supported or clamped
beam with initial velccity V, over its span 2L is obtainable by simple

momentum considerations (Symonds 1955). HWriting VO = 11/m , the results for

the final deflection Ye and final angle 6 as functions of position can

3

§' be written, for the case of pinned ends, as
3 2
2 y I.°L

f 1 X, X

3 3‘ P ~) =
: ! TR Al (4.1a)
5 L P
R 2

b I.°L

4 Gf EmH_ (3 L) (t:.1b)
I P

where Il is the impulse per unit length and x is measured from the end,
Fig. III 30, The quantities of main interest are the final central deflection

yf(L) and angle at the support ef(o) , which are (for pinned ends) written

as

th = {(4,1c)

For clamped ends Hp is replaced by 2Mp. The notation in equations (4.lc) is

that of Florence and Firth; the superscript (1) distinguishes the elementary
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rigid-plastic solution from those including corrections for finite deflections

and strain-hardening.

As mentioned, end conditions of simple support and clamped ends were
used, with design so as to permit free axial moticn and enable axial constraints

to be negligible. Their materials und properties are listed in Table 19.

TABLE IIT 10

Material Yield Stress Strain Hardening Modulus
- T {psi) (psi)
Al 2024-Tu 52,000 0.329 x lO6
Al 6061-T6 40,000 ‘ 0.114 x lO6
CR 1018 Steel 54,000 0.2 x 106
Annealed 1018 Stesl 43,000 . s e e e e

in all tests the beam dimensicns were nominally 18 inches in length, 1.0 inches
ip width, and 0.25 inches in depth.

The loads of impulsive type were applied by detonation of sheet ex-
plosive (DuPent EL-S06D), over neoprene layers to prevent :-alling. The initial
velocities, presumed uniform because of the large speed of the detonation wave
relative to beam propagation speeds, were measured by streak photography for
four aluminum and four steel specimens. In this way a calibration was obtained
in termi of impulse per unit volume of sheet explosive. This quantity was
found to have constant values for beams of the two materials, namely 2.9 x 106
dyne~sec/cm3 for aluminum and 3.25 x 106 dyne-sec/cm3 for steel.

(It is not explained why the values for the two materials are dif-

ferent. For a given geometry, explosive material and burning time, the impulse

it e o

U AR
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should be a constant on a stationary surface. The reduction of impulse for
aluminum beams is perhaps associated with the larger velocities attained

by these specimens in the "delivery time'" of the impulse, given as about

33 micro-seconds. But if this is the explanation, then presumably a sim-
ilar variation of velocity occurred in the test series, since the thickness
of explosive sheet was varied to give the desired range of initial veloci-
ties.)

Since the tests were designec to study the validity of rigid-
plastic analysis, they covered a range of energy ratio R from less than
unity to 6 or 7, ( R = initial kinetic energy divided by maximum elastic
strain energy). The final deflections ranged from a small fraction of the
half-span length L to more than %L , thus up to about twenty times the
beam depth. With deflections as large as these, the precise support con-
ditions are important. The simply supported beams had pins which moved
inward on bearing blocks as the beam deflected. The clamped beams had each

of the "built-in" ends in a close fitting channel which permitted material

te flow into the span. Thus, ducing ihe tests on supported heams the span
decreased, while in the tests on clamped beams the span remained fixed
while the developed length increased.

If appreciable constraints against axial motion were present, these
would cause axial forces which (for full constraints) would dominate the

motion for deflections appreciably larger than the beam depth (Symonds and

Mentel 1958). That such constraints were negligible was indicated by the
authors' check on one of the tests (Al 202u-T4 with clamped ends) which
showed an absence of longitudinal strain at the middle surface; in this test

the strain in the outer fibers reached 4 percent and the deflection was 0.43L.
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The authors also gave modifications of the rigid-plastic analysis to take
approximate account of finite deflections. These resulted in corrections
which were in general small, rarely exceeding 5 percent. The authors seem
to have effectively disposed of questions arising from the finite‘deflectn
ions of their specimens.

Florence and Firth presented their results in the form of tables
giving the final midpoint deflection and the slope angle measured near the
supports. They also displayed results of several test series by means of
plots of the midpoint deflection ratio 6/L against the impulse per unit
length Il ; and of the dimensionless displacement vy/L against position x,
Typical plots of both kinds are shown in Figures III 31(a,b,c).

These plots show the typical discrepancies between the predictions
of equations (4.,1) and the test results. The test deformations were smaller,
by amounts from about 25 percert to over 50 percent, compared to predict-
ions of the elementary theory. The inclusion of corr:ctions for finite

deflection led to minor improvement, while that for strain hardening led

to substantially better agreement., Table III 1] summarizes these compariscns,

The corrections for deflection effects and strain hardening will
not be discussed here in detail, although they are of great interest. Both
involve approximations, but seem quite reasonable. The theory of Florence
and Firth which gives their strain hardening correction is barad on assump-
tions similar to those by Cowper and Symonds (1957): the hardening was ex-
pressed by a linear moment-curvature relaticn; the length of the hardening
zone was assumed finite but small compared to the span; and the strain
hardening was disregarded in the initial phase (in which distributed

deformations occur), The accelerations in the plastic zones are taken the
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same as in the rotating segments, These and other assumptions avoided

the difficult problem of a nonlinear partial differential equatien with
conditions at moving boundaries. Indicaticns of the magnitudes of the cor-
rections due to strain hardening, in the authors' thecry, are shown in
Figures III 3l(a,b,c), and in Table III 11.

As illustrated in Fig. III 3ic, the experimental deflection curves
were nearly straight except in central regions. This implies that the
first phase of the rigid-plastic theory, in which the general curvatures
are produced by travelling hLinges, is reduced in importance in the actual
behavior., The effect is the same as that predicted by the analysis includ-
ing rate sensitivity, as discussed in the preceding tection. Since I'lorence
and Firth's analysis of strain-hardening does not affect deformation in the
first phase, and reduces deflections in the second, it has the opposite
effect, tending to increase the general curvature of the specimens.

The same questions raised earlier about experiments must again be

asked. The discrepancies between experiment and theory could be attributed

not only to strain hardening, but to elastic vibrations (especially for
beams of aluminum alloys); strain rate sensitivity (especially for the
annealed steel specimens); axial constraints; shear deformaticns; or to
combinations of these. What can be learned from the tests about the rela-
tive importance of these?

It is of interest to re-plot the experimental deformations as
ratios to the quantities from elementary rigid-plastic theory. As in the
similar treatment of test results for the cantilevers, the new plots pro-
vide help in answering the question stated apove.

Figure III 32 gives a plot of the ratio of experimental angle to
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the angle predicted by the theory without strain-hardening, against values
of the applied impulse as abscissa. There is a very steep rise in the
curves over a relatively short range of impulse values, and the angular
ratio tends to become constant at about 0.6 for most plots. The poor
agreement in the low impulse range is probably due to elastic vibrations,
1f the plot is changed to that of the ratio of the experimental angle to
the angle predicted by analysis including strain-hardening, no signifi-
cant change in the shapes of the graphs occurs. The plots of deflection
ratios against impulse are shifted upward from those of Fig. III 32 so
that the horizontal portions of the curves are at 0.7 approximately.

To further investigate the evidence for a strain-hardening influ-
ence, the ratio of the experimental angle to the angle predicted by the
elementary theory is plotted against the experimental angle in Fig. III 33.
At the large angular deformation values the curves should show a downward
slope if strain-hardening influences or axial constraints are important.

This does not ceem to be the case. It strongly suggests the presence of

b

o ther influences, in particular of strain rate sensitivity.

Figure III 34 shows the variation of the same angle ratio plotted
against R , (the ratio of input energy to the maximum elastic bending
energy the beam can absorb). For R>3 the angular ratio is substantially
constant for all materials. Taken by itself this indicates that for R> 3,
approximately, elastic effects are no longer important, in these tests.

In discussing Parkes's sclution to the fixed-ended beam problem
in Section 2 of this chapter a "mode approximation" solution was described

(Martin and Symonds 1966). This proceedurewas applied to the present

probiem with the effacts of strain hardening introduced into the analysis,

COVR Lk
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using the linear relationship between moment and curvature and the same
coefficient A as used by Florence and Firth. The techniquewas described
by Symonds (1865) for the impact cantilever test, Tig. III 35 shows a

c omparison between the elementary rigid-plastic soiution, the solution of
Florence and Firth with strain hardening only, and the mode solution for
various values of the parameter 2z/h where L is the beam depth and z
is the length of the plastic region., The great advantage of the mcde sol-
ution is the ease with which approximate final deformation values are
obtained, when strain-hardening or other secondary effects are put into
the analysis. It has the disadvantage that one must guess a suitable
value for the parameter z/h , although for a considerable range of z/h
the shift of the deformation curves i slight. The fact that the final
deformed shapes of the test specimens were relatively straight makes it
plausible to expect the mode approximation method to be valid. The
curves given in Fig. III 35 do show better agreement than the curves from
the elementary or the strain-hardening-corrected theory of Florence and
Firth.

This observation suggests the use of a s.rain rate correction,
either in an analysis analogous to Florence and Firth's for strain hardening,
or in a mode approximation sclution (as by Symonds (1965) and Bodner (1967) ).
The latter has been done, although the plots are not shown. Using again
the power type formula equation (3.1) for the strain rate - overstress
dependence, with constants D = 40 , p = 5 for steel; D = 6500, p = 4
for aluminum, leads to the surprising result that the corrections are too
large for steel (both cold rolled and snnealed) and too small for the

aluminum alloys. This is oppesite to what would be expected from the known

Ciard g Ny
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strain rate behavior of these metals; annealed mild steel would bLe

_____ u Fob St

also that the general extent of disagreement with the uncorrected rigid-

plastic theory, as indicated by Table III 11, is about the same for all

the test metals: aluminum alloys, c¢old rolled steel, and annealed steel.

Since the strain-hardening slopes (Table III1lC) of all the materials are

l to exhibit stronger rate sensitivity than any of the others. It is nctable
T, not widely Jifferent, the lack of strong variations in these disagreements

£
k1
i
3
3

with elementary theory here is an argument for strain-hardening as the

leading secondary effect, contrary to the indications from Fig. III 33.
It is seen that the analysis of Florence and Firth's experiments

leads to conclusions rather different from, lLut less clear, than those

— deduced from analyses of experiments on cantilevers in the previous
b i
- Sections. The comparisons with elementary rigid-plastic analysis show that

this approach, in the authors' words, "serves as a reasonable first-order

1o i AiRY e R

theory". The plots of Fig. 1II 34 would indicate that the neglect of elastic

f- deformations is permissible for loads such that the energy ratio R>3 .,
i On the other hand the plots of Fig., III 33 by themselves suggest that
i strain-hardening is not the main source of discrepancies even for rotations
§~ larger than 0.5 radians; if it were, the agreement with an analysis neglect-
- ing strain-hardening would get worse and the trend of the plots would be
T downward. It is also possible that both elastic deformations and strain-
-
hardening remain important, and that the two phenomena counterbalance each
4 other in the region where the impulse and deformation angie are large.
. Gimjlarly an interaction between elastic deflections and strain rate effects

may be occurring.

To sum up, while the experiments on cantilevers with tip masses of
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Parkes, Bodner and Symonds, and recently Bodner (1967), have given definite
indications of the dominant role of strain rate sensitivity, and of the
applicability of mode approximation techniques, the experiments on supported
and clamped beams of Florence and Firth indicate that the discrepancies
between predicted and observed deformation magnitudes in their tests stem
rather from interactions between two or more secondary effects. Further
research is needed to fully distinguish the roles of elastic deformation,
strain-hardening, and strain rate sensitivity, without neglecting attention
vo the possibility of important axial constraint effects and plastic shear

deformations.
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Fipure Captions for Chapter 111

Caption
Summary of calgulated and experimental results for cold-
rolled steel beams, adapted from Duwez, Clark and Bohnen-

blust(1950),

Comparison of angular deformationls measured in tests of
Duwez, Clark and Bohnenblust (1950) with predictions of
elastic-plastic analysis and of ripid-plastic analysis
with inclusion of several seccondary effects.

Impact of a mass on a lonp beam: diagrams for riecid-plastic
analysis.

Lxperiments of Parkes and typical final snapes of specimens:
(a) tests on cantilevers (Parkes, 1955); (1) test
ended beams (FParkes, 1950, 1958).
mass G, initial velocity V.

s on fixed-
The falline weipht has

Parkes's cautilever test: diaprams for rigid-plastic ana-
lysis, The striking mass G is assumed to stick to the beam
after impact, but is omicted in sketches (b) and (4).

Results from Paikes's (1955) tests on mild steel cantilevers,
shown in comparison with deformation anrle predicted by ripeid-
plastic analysis using static fu'lv ~lastic moment. Ou is
given by Equation (2.10); R = mL/2G,

Parkes's (1355) tests on mild steel cantiievers: test defor-
mation angles are shown in comparison with mapnitude predicted
by elementary ripid-plastic analvsis, with dynamic plastic
moment substituted for the static value.

Parkes's (1955) tests on mild steel cantilevers: comparison
of test anples with elementary ririd-plastic theory. Each
vair of test points joined bv a line has same B (same speci-
men geometry) but different velocitv and final deflection.

If ripid-plastic analysis is valid except for omission of
strain-hardening, asreement with theory would be worse at
larger strains; in fact, arreement is better at larger strains.

Parkes's (1956, 1958) tests on fixed-ended beams: pattcins

of deformation in elementarv rigid-plastic analvsis, Sketch

of test arransement does not show the actual end-fixing devices,
which prevented rotation but permitted axial motion.

Pattern of confipuration assumed in the “"mode approximation"
solution, with one depree of freedom,

Results of Parkes‘s tests on fixed-ended beams (parkes 19956, 1958),
and comparisons with theory. Displacement y in inches of impacted
point is plotted afrainst length ratic r = |, /Us with constant Lo
as shown. Curves wWere calculated from ripid-plastic "mode approx-
imation" theory; full curves use static fullv plastic moment,
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(cont.)

CaEtion

dashed curves use dynamic plastic moment, corresponding to
strain estimated from Equation (2,298), hinpe lenpth taken
as 0.5 in. in all cases.

Results of Parkes's tests on fixed-ended beams: ratio of
test deflection to deflection predicted by ripid-plastic

(mode approximation) solution usinp static fullv plastic

moment.

Evidence from Parkes's tests on mild steel fixed-ended beams
concerning influence of strain rate sensitivitv of fullv
plastic moment. Pairs of test points joined by lines have
same input kinetic energy but different velocity. Plot is

of ratio of test deflection to that predicted by ririd-plastic
analysis (mode solution) usinpg static fully plastic moment.
(Compare Fip, 1II 16),

Lower vield stress dependence on strain rate of mild steel
according to tests of Manjoine (19uu), (See Fip. I 6 for
comparison with other strain rate test results). Curve of
dynamic plastic moment was derived by Parkes (1955) from
Manjoine's stress curve (method not specified).

Curves used by Parkes (1956, 1958) for dynamic plastic moment
of duralumin and brass as functions of strain rate. Dynamic
yield stress data for duralumin attributed to Klinper (1950),
Evans (1942) and Whiffin (1948); for brass to Jones and Moore
(loun), (But see Fig, III 18 for actual curves of Lvans for
duralumin and brass, showinp these metals as rate insensitive
up to about ¢ = 6 sec™i,)

Parkes's test results for mild steel fixed-ended beams: .om-
parison with rigid-plastic analysis (bv mode approximation
solution) using dynamic plastic moment. Compare this plot with
that of Fig. III 13 using static plastic moment,

Static momente-curvature test diarrams of metals used in
Parkes's tests.

Tensile impact test curves of Evans (19u2): €, = "yield point
stress' ; O = “tensile ctrength',

Comparison of (a) mild steel and (b) 6061-T6 aluminum impulse
test results of Bodner and Symonds (1962) with elementary
rigid-plastic theory and with theories taking account of strain
rate sensitivity. Curves (A) and (D) take M as constant with
respectively the static and appropriate dynagic magnitude;
curves (B) and (C) take M as a function of local strain race.

Impulse test results of Bodner and Speirs (1963) on 3003-Hlu
aluminum at (a) room temperature; (b) at 21?OF; (c) at 400°F,

u».tmmﬂﬁm$ﬁmmﬁw
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Cagtion

Notation for "impact”problem: cantilever with imposed base
acceleration. DBeam may be taken as initially moving with
constant velocity V ; then base is brought to rest in a
specified short tim@ t,-

Patterns of deformation for the impact problem; regions of
plastic deformation of opposite sipns are indicated in (C).

Curves summarizing how the initial deformation pattern in

the impact problem depends on the base acceleration V_/t

and the mass ratio k = G/mL. The curves show where tfie
negative moment has its largest mapnitude for a given,a and
k., The acceleration piotted is dimensionless, a = mL VO/Mpt0
(From Ting and Symonds, 1962).

Comparisons of impact test results on (a) mild steel and ()
6061-T6 aluminum with predictions of elementary rigid-plastic
analvsis. Also shown are a curve representing the approxi-
mate viscoplastic solution due to Ting and Symonds (1962)

and one result from the "complete" viscoplastic solution of

Ting (1963). Test deformation angles are shown for the test
points.

(a) Representat}ve computed curves for the impulse problem of
A = (km/B)1/P and A/z as functions of time, from Ting (1964).
Note that 1 + A is the ratio of dynamic moment at the base
to the static fully plastic moment; M A/z is the shear force
at the base. P

(b) Representative computed curves for the impulse problem of
the length z of the plastic zone and the curvature rate km
at the base, as functions of time (from Ting, 1964).

Compariscon of viscoplastic theoriee and tcst results with rigid-
plastic solution of impulse problem,

Representative computed curves for the impulse problem from Ting
(1964); note nearly linear decrease of angular velocity 01.

Representative computed curves for the impact problem, from
viscoplastic solution of Ting and Symonds (1962); curves are for
dynamic moment at base Mm/Mp and shear force at base q.

Typical curves for impact problem from Ting and Symonds's (1962)
viscoplastic solution.

(a) shows plastic zone length z and curvature rate at base &m
as functions of time,

{b) shows nearly linear decrease of angular velocity 0, as
function of time, t > t,.




L

Fieure

IIT 30

111 31

IIT 32

IIT 34

III 35

CaEtion
Notation for tests and analyses of Florence and Firth (19¢95),

Typical results of Florence and Firth (1964): (3) and (h)

show central deflection as functions of impulse per unit
length; (c) shows final deformation curves. Sunperscripts

have the followine meaninp: (1) desirnates elementary ririd-
plastic solutien; (2) designates rigid-plastic solution with

co rection for finite defiections; (3) designates ririd-plastic
analysis with strain hardening included,

Plots from results of Flerence and Tirth's tests (1965); com-
parison of deformation ansle (necar support) observed in test
with uncorrected rigpid-plastic theorv rlotted arainst unit
impulse. If this type of analvsis is valid, and disaercemcar
is attributed to strain hardening, the discrepancy should
increase as the load impulse increases; plots show opposite
trends.

Plots from results of Fleorence and Tirth's (196%) experiments.
Values of test deformation anple divided by prediction of
uncorrected rigid-plastic theorv are plotted as function of
experimental anple,

Plots from results of Tlorence and Tirth's (1965%) experiments,
Values of test deformation anple divided bv rrediction of
uncorrected ripid-plastic theory are plotted arainst cnergy
ratio F.

Comparison of deformation anrles observed in Florence and
Firth's (1965) tests with elementarv ririd plastic solution,
with Florence and Firth's solution correcting for strain
hardening, and with "mode approximation' solution considering
strain hardening,
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